Data Science with R Certification Training Course in Delhi

57,819 Learners

Group Enrollment with Friends or Colleagues |Get a quote

R Certification Course Overview

Data Science with R Programming Training in Delhi teaches descriptive and predictive analytics and everything about data visualization and exploration with the R language. The Data Science with R Programming Course in Delhi has import & export of data in R, data structures in R, R packages, forecasting, statistical concepts, and cluster analysis and every other data science concept.

R Certification Training Key Features

100% Money Back Guarantee
No questions asked refund*

At Simplilearn, we value the trust of our patrons immensely. But, if you feel that this R certification course does not meet your expectations, we offer a 7-day money-back guarantee. Just send us a refund request via email within 7 days of purchase and we will refund 100% of your payment, no questions asked!
  • 64 hours of Applied Learning
  • Dedicated mentoring session from industry experts
  • 10 real-life industry projects
  • Lifetime access to self-paced learning
  • 64 hours of Applied Learning
  • 10 real-life industry projects
  • Dedicated mentoring session from industry experts
  • Lifetime access to self-paced learning
  • 64 hours of Applied Learning
  • 10 real-life industry projects
  • Dedicated mentoring session from industry experts
  • Lifetime access to self-paced learning

Skills Covered

  • Business analytics
  • Data structures and data visualization
  • Graphics in R for data visualization
  • Apriori algorithm
  • R programming and its packages
  • Apply functions and DPLYR function
  • Hypothesis testing
  • kmeans and DBSCAN clustering
  • Business analytics
  • R programming and its packages
  • Data structures and data visualization
  • Apply functions and DPLYR function
  • Graphics in R for data visualization
  • Hypothesis testing
  • Apriori algorithm
  • kmeans and DBSCAN clustering
  • Business analytics
  • R programming and its packages
  • Data structures and data visualization
  • Apply functions and DPLYR function
  • Graphics in R for data visualization
  • Hypothesis testing
  • Apriori algorithm
  • kmeans and DBSCAN clustering

Take the first step to your goals

Lifetime access to self-paced e learning content

Benefits

Data Science with R Programming Training in Delhi will seamlessly land you into the Big Data Analytics job market, that will grow at a rate of 29.7%, and will reach $40.6 billion by 2023. Raises for analysts are 50% higher than for their IT counterparts. The Data Science with R Programming course in Delhi strengthens your career.

  • Designation
  • Annual Salary
  • Hiring Companies
  • Annual Salary
    ₹302KMin
    ₹516KAverage
    ₹1023KMax
    Source: Glassdoor
    Hiring Companies
    Amazon hiring for Data Analyst professionals in Delhi
    JPMorgan Chase hiring for Data Analyst professionals in Delhi
    Genpact hiring for Data Analyst professionals in Delhi
    VMware hiring for Data Analyst professionals in Delhi
    LarsenAndTurbo hiring for Data Analyst professionals in Delhi
    Citi hiring for Data Analyst professionals in Delhi
    Accenture hiring for Data Analyst professionals in Delhi
    Source: Indeed
  • Annual Salary
    ₹509KMin
    ₹1364KAverage
    ₹4200KMax
    Source: Glassdoor
    Hiring Companies
    Accenture hiring for Data Scientist professionals in Delhi
    Oracle hiring for Data Scientist professionals in Delhi
    Microsoft hiring for Data Scientist professionals in Delhi
    Walmart hiring for Data Scientist professionals in Delhi
    Amazon hiring for Data Scientist professionals in Delhi
    Source: Indeed

Training Options

Self Paced Learning

  • Lifetime access to high-quality self-paced eLearning content curated by industry experts
  • 7 hands-on R projects to perfect the skills learned
  • Simulation test papers for self-assessment
  • Lab access to practice live during sessions
  • 24x7 learner assistance and support

₹28,320

Corporate Training

Upskill or reskill your teams

  • Flexible pricing & billing options
  • Private cohorts available
  • Training progress dashboards
  • Skills assessment & benchmarking
  • Platform integration capabilities
  • Dedicated customer success manager

R Certification Course Curriculum

Eligibility

Data Science with R Programming Training in Delhi offers the best benefits to graduates who want to create a career in Data Science, professionals in the data and business analysis field already, and experienced professionals who want to apply the benefits of Data Science to their fields. Data Science with R Programming Training in Delhi is also ideal for aspiring learners such as IT professionals or software developers who’d want to scale up in a Data Analytics career.
Read More

Pre-requisites

There aren’t any prerequisites for enrolling in Data Science with R Programming Training in Delhi. The Data Science with R Programming course in Delhi is surely the best courses to commence your career journey in the field of data science.
Read More

Course Content

  • Data Science with R Programming

    Preview
    • Lesson 00 - Course Introduction

      08:36Preview
      • Course Introduction
        01:31
      • Accessing Practice Lab
        07:05
    • Lesson 01 - Introduction to Business Analytics

      21:06Preview
      • 1.001 Overview
        00:44
      • 1.002 Business Decisions and Analytics
        04:33
      • 1.003 Types of Business Analytics
        03:53
      • 1.004 Applications of Business Analytics
        08:57
      • 1.005 Data Science Overview
        01:29
      • 1.006 Conclusion
        01:30
      • Knowledge Check
    • Lesson 02 - Introduction to R Programming

      26:35Preview
      • 2.001 Overview
        00:31
      • 2.002 Importance of R
        05:20
      • 2.003 Data Types and Variables in R
        02:14
      • 2.004 Operators in R
        04:39
      • 2.005 Conditional Statements in R
        02:45
      • 2.006 Loops in R
        05:07
      • 2.007 R script
        01:44
      • 2.008 Functions in R
        02:58
      • 2.009 Conclusion
        01:17
      • Knowledge Check
    • Lesson 03 - Data Structures

      50:57Preview
      • 3.001 Overview
        01:04
      • 3.002 Identifying Data Structures
        13:14
      • 3.003 Demo Identifying Data Structures
        14:05
      • 3.004 Assigning Values to Data Structures
        04:51
      • 3.005 Data Manipulation
        09:23
      • 3.006 Demo Assigning values and applying functions
        07:46
      • 3.007 Conclusion
        00:34
      • Knowledge Check
    • Lesson 04 - Data Visualization

      26:25Preview
      • 4.001 Overview
        00:29
      • 4.002 Introduction to Data Visualization
        03:03
      • 4.003 Data Visualization using Graphics in R
        15:35
      • 4.004 ggplot2
        05:14
      • 4.005 File Formats of Graphic Outputs
        01:08
      • 4.006 Conclusion
        00:56
      • Knowledge Check
    • Lesson 05 - Statistics for Data Science-I

      14:10Preview
      • 5.001 Overview
        00:21
      • 5.002 Introduction to Hypothesis
        02:06
      • 5.003 Types of Hypothesis
        03:13
      • 5.004 Data Sampling
        02:48
      • 5.005 Confidence and Significance Levels
        04:33
      • 5.006 Conclusion
        01:09
      • Knowledge Check
    • Lesson 06 - Statistics for Data Science-II

      29:55Preview
      • 6.001 Overview
        00:28
      • 6.002 Hypothesis Test
        00:47
      • 6.003 Parametric Test
        14:36
      • 6.004 Non-Parametric Test
        08:31
      • 6.005 Hypothesis Tests about Population Means
        02:09
      • 6.006 Hypothesis Tests about Population Variance
        00:45
      • 6.007 Hypothesis Tests about Population Proportions
        01:11
      • 6.008 Conclusion
        01:28
      • Knowledge Check
    • Lesson 07 - Regression Analysis

      45:04Preview
      • 7.001 Overview
        00:26
      • 7.002 Introduction to Regression Analysis
        01:11
      • 7.003 Types of Regression Analysis Models
        01:38
      • 7.004 Linear Regression
        08:59
      • 7.005 Demo Simple Linear Regression
        07:29
      • 7.006 Non-Linear Regression
        03:49
      • 7.007 Demo Regression Analysis with Multiple Variables
        13:29
      • 7.008 Cross Validation
        01:48
      • 7.009 Non-Linear to Linear Models
        02:06
      • 7.010 Principal Component Analysis
        02:45
      • 7.011 Factor Analysis
        00:26
      • 7.012 Conclusion
        00:58
      • Knowledge Check
    • Lesson 08 - Classification

      01:05:14Preview
      • 8.001 Overview
        00:31
      • 8.002 Classification and Its Types
        04:24
      • 8.003 Logistic Regression
        03:35
      • 8.004 Support Vector Machines
        04:26
      • 8.005 Demo Support Vector Machines
        11:13
      • 8.006 K-Nearest Neighbours
        02:34
      • 8.007 Naive Bayes Classifier
        02:53
      • 8.008 Demo Naive Bayes Classifier
        06:15
      • 8.009 Decision Tree Classification
        09:47
      • 8.010 Demo Decision Tree Classification
        06:25
      • 8.011 Random Forest Classification
        02:01
      • 8.012 Evaluating Classifier Models
        06:04
      • 8.013 Demo K-Fold Cross Validation
        04:09
      • 8.014 Conclusion
        00:57
      • Knowledge Check
    • Lesson 09 - Clustering

      28:10Preview
      • 9.001 Overview
        00:17
      • 9.002 Introduction to Clustering
        02:57
      • 9.003 Clustering Methods
        07:47
      • 9.004 Demo K-means Clustering
        11:15
      • 9.005 Demo Hierarchical Clustering
        05:02
      • 9.006 Conclusion
        00:52
      • Knowledge Check
    • Lesson 10 - Association

      23:13Preview
      • 10.001 Overview
        00:15
      • 10.002 Association Rule
        06:20
      • 10.003 Apriori Algorithm
        05:19
      • 10.004 Demo Apriori Algorithm
        10:37
      • 10.005 Conclusion
        00:42
      • Knowledge Check
  • Free Course
  • Math Refresher

    Preview
    • Lesson 01: Course Introduction

      06:23Preview
      • 1.01 About Simplilearn
        00:28
      • 1.02 Introduction to Mathematics
        01:18
      • 1.03 Types of Mathematics
        02:39
      • 1.04 Applications of Math in Data Industry
        01:17
      • 1.05 Learning Path
        00:25
      • 1.06 Course Components
        00:16
    • Lesson 02: Probability and Statistics

      32:38Preview
      • 2.01 Learning Objectives
        00:29
      • 2.02 Basics of Statistics and Probability
        03:08
      • 2.03 Introduction to Descriptive Statistics
        02:12
      • 2.04 Measures of Central Tendencies​
        04:50
      • 2.05 Measures of Asymmetry
        02:24
      • 2.06 Measures of Variability​
        04:55
      • 2.07 Measures of Relationship​
        05:22
      • 2.08 Introduction to Probability
        08:36
      • 2.09 Key Takeaways
        00:42
      • 2.10 Knowledge check
    • Lesson 03: Coordinate Geometry

      06:31Preview
      • 3.01 Learning Objectives
        00:35
      • 3.02 Introduction to Coordinate Geometry​
        03:16
      • 3.03 Coordinate Geometry Formulas​
        01:51
      • 3.04 Key Takeaways
        00:49
      • 3.05 Knowledge Check
    • Lesson 04: Linear Algebra

      29:53Preview
      • 4.01 Learning Objectives
        00:29
      • 4.02 Introduction to Linear Algebra
        03:21
      • 4.03 Forms of Linear Equation
        05:21
      • 4.04 Solving a Linear Equation
        05:21
      • 4.05 Introduction to Matrices
        02:05
      • 4.06 Matrix Operations
        07:07
      • 4.07 Introduction to Vectors
        01:00
      • 4.08 Types and Properties of Vectors
        01:52
      • 4.09 Vector Operations
        02:39
      • 4.10 Key Takeaways
        00:38
      • 4.11 Knowledge Check
    • Lesson 05: Eigenvalues Eigenvectors and Eigendecomposition

      08:56Preview
      • 5.01 Learning Objectives
        00:29
      • 5.02 Eigenvalues
        01:19
      • 5.03 Eigenvectors
        04:09
      • 5.04 Eigendecomposition
        02:21
      • 5.05 Key Takeaways
        00:38
      • 5.06 Knowledge Check
    • Lesson 06: Introduction to Calculus

      09:47Preview
      • 6.01 Learning Objectives
        00:30
      • 6.02 Basics of Calculus
        01:20
      • 6.03 Differential Calculus
        03:01
      • 6.04 Differential Formulas
        01:01
      • 6.05 Integral Calculus
        02:33
      • 6.06 Integration Formulas
        00:47
      • 6.07 Key Takeaways
        00:35
      • 6.08 Knowledge Check
  • Free Course
  • Statistics Essential for Data Science

    Preview
    • Lesson 01: Course Introduction

      07:05Preview
      • 1.01 Course Introduction
        05:19
      • 1.02 What Will You Learn
        01:46
    • Lesson 02: Introduction to Statistics

      25:49Preview
      • 2.01 Learning Objectives
        01:16
      • 2.02 What Is Statistics
        01:50
      • 2.03 Why Statistics
        02:06
      • 2.04 Difference between Population and Sample
        01:20
      • 2.05 Different Types of Statistics
        02:42
      • 2.06 Importance of Statistical Concepts in Data Science
        03:20
      • 2.07 Application of Statistical Concepts in Business
        02:11
      • 2.08 Case Studies of Statistics Usage in Business
        03:09
      • 2.09 Applications of Statistics in Business: Time Series Forecasting
        03:50
      • 2.10 Applications of Statistics in Business Sales Forecasting
        03:19
      • 2.11 Recap
        00:46
    • Lesson 03: Understanding the Data

      17:29Preview
      • 3.01 Learning Objectives
        01:12
      • 3.02 Types of Data in Business Contexts
        02:11
      • 3.03 Data Categorization and Types of Data
        03:13
      • 3.03 Types of Data Collection
        02:14
      • 3.04 Types of Data
        02:01
      • 3.05 Structured vs. Unstructured Data
        01:46
      • 3.06 Sources of Data
        02:17
      • 3.07 Data Quality Issues
        01:38
      • 3.08 Recap
        00:57
    • Lesson 04: Descriptive Statistics

      34:51Preview
      • 4.01 Learning Objectives
        01:26
      • 4.02 Descriptive Statistics
        02:03
      • 4.03 Mathematical and Positional Averages
        03:15
      • 4.04 Measures of Central Tendancy: Part A
        02:17
      • 4.05 Measures of Central Tendancy: Part B
        02:41
      • 4.06 Measures of Dispersion
        01:15
      • 4.07 Range Outliers Quartiles Deviation
        02:30
      • 4.08 Mean Absolute Deviation (MAD) Standard Deviation Variance
        03:37
      • 4.09 Z Score and Empirical Rule
        02:14
      • 4.10 Coefficient of Variation and Its Application
        02:06
      • 4.11 Measures of Shape
        02:39
      • 4.12 Summarizing Data
        02:03
      • 4.13 Recap
        00:54
      • 4.14 Case Study One: Descriptive Statistics
        05:51
    • Lesson 05: Data Visualization

      23:36Preview
      • 5.01 Learning Objectives
        00:57
      • 5.02 Data Visualization
        02:15
      • 5.03 Basic Charts
        01:52
      • 5.04 Advanced Charts
        02:19
      • 5.05 Interpretation of the Charts
        02:57
      • 5.06 Selecting the Appropriate Chart
        02:25
      • 5.07 Charts Do's and Dont's
        02:47
      • 5.08 Story Telling With Charts
        01:29
      • 5.09 Data Visualization: Example
        02:41
      • 5.10 Recap
        00:50
      • 5.11 Case Study Two: Data Visualization
        03:04
    • Lesson 06: Probability

      21:51Preview
      • 6.01 Learning Objectives
        00:55
      • 6.02 Introduction to Probability
        03:10
      • 6.03 Probability Example
        02:02
      • 6.04 Key Terms in Probability
        02:25
      • 6.05 Conditional Probability
        02:11
      • 6.06 Types of Events: Independent and Dependent
        02:59
      • 6.07 Addition Theorem of Probability
        01:58
      • 6.08 Multiplication Theorem of Probability
        02:08
      • 6.09 Bayes Theorem
        03:10
      • 6.10 Recap
        00:53
    • Lesson 07: Probability Distributions

      24:45Preview
      • 7.01 Learning Objectives
        00:52
      • 7.02 Probability Distribution
        01:25
      • 7.03 Random Variable
        02:21
      • 7.04 Probability Distributions Discrete vs.Continuous: Part A
        01:44
      • 7.05 Probability Distributions Discrete vs.Continuous: Part B
        01:45
      • 7.06 Commonly Used Discrete Probability Distributions: Part A
        03:18
      • 7.07 Discrete Probability Distributions: Poisson
        03:16
      • 7.08 Binomial by Poisson Theorem
        02:28
      • 7.09 Commonly Used Continuous Probability Distribution
        03:22
      • 7.10 Application of Normal Distribution
        02:49
      • 7.11 Recap
        01:25
    • Lesson 08: Sampling and Sampling Techniques

      36:45Preview
      • 8.01 Learnning Objectives
        00:51
      • 8.02 Introduction to Sampling and Sampling Errors
        03:05
      • 8.03 Advantages and Disadvantages of Sampling
        01:31
      • 8.04 Probability Sampling Methods: Part A
        02:32
      • 8.05 Probability Sampling Methods: Part B
        02:27
      • 8.06 Non-Probability Sampling Methods: Part A
        01:42
      • 8.07 Non-Probability Sampling Methods: Part B
        01:25
      • 8.08 Uses of Probability Sampling and Non-Probability Sampling
        02:08
      • 8.09 Sampling
        01:08
      • 8.10 Probability Distribution
        02:53
      • 8.11 Theorem Five Point One
        00:52
      • 8.12 Center Limit Theorem
        02:14
      • 8.13 Sampling Stratified: Sampling Example
        04:35
      • 8.14 Probability Sampling: Example
        01:17
      • 8.15 Recap
        01:07
      • 8.16 Case Study Three: Sample and Sampling Techniques
        05:16
      • 8.17 Spotlight
        01:42
    • Lesson 09: Inferential Statistics

      37:08Preview
      • 9.01 Learning Objectives
        01:04
      • 9.02 Inferential Statistics
        03:09
      • 9.03 Hypothesis and Hypothesis Testing in Businesses
        03:24
      • 9.04 Null and Alternate Hypothesis
        01:44
      • 9.05 P Value
        03:22
      • 9.06 Levels of Significance
        01:16
      • 9.07 Type One and Two Errors
        01:37
      • 9.08 Z Test
        02:24
      • 9.09 Confidence Intervals and Percentage Significance Level: Part A
        02:52
      • 9.10 Confidence Intervals: Part B
        01:20
      • 9.11 One Tail and Two Tail Tests
        04:43
      • 9.12 Notes to Remember for Null Hypothesis
        01:02
      • 9.13 Alternate Hypothesis
        01:51
      • 9.14 Recap
        00:56
      • 9.15 Case Study 4: Inferential Statistics
        06:24
      • Hypothesis Testing
    • Lesson 10: Application of Inferential Statistics

      27:20Preview
      • 10.01 Learning Objectives
        00:50
      • 10.02 Bivariate Analysis
        02:01
      • 10.03 Selecting the Appropriate Test for EDA
        02:29
      • 10.04 Parametric vs. Non-Parametric Tests
        01:54
      • 10.05 Test of Significance
        01:38
      • 10.06 Z Test
        04:27
      • 10.07 T Test
        00:54
      • 10.08 Parametric Tests ANOVA
        03:26
      • 10.09 Chi-Square Test
        02:31
      • 10.10 Sign Test
        01:58
      • 10.11 Kruskal Wallis Test
        01:04
      • 10.12 Mann Whitney Wilcoxon Test
        01:18
      • 10.13 Run Test for Randomness
        01:53
      • 10.14 Recap
        00:57
    • Lesson 11: Relation between Variables

      20:07Preview
      • 11.01 Learning Objectives
        01:06
      • 11.02 Correlation
        01:54
      • 11.03 Karl Pearson's Coefficient of Correlation
        02:36
      • 11.04 Karl Pearsons: Use Cases
        01:30
      • 11.05 Correlation Example
        01:59
      • 11.06 Spearmans Rank Correlation Coefficient
        02:14
      • 11.07 Causation
        01:47
      • 11.08 Example of Regression
        02:28
      • 11.09 Coefficient of Determination
        01:12
      • 11.10 Quantifying Quality
        02:29
      • 11.11 Recap
        00:52
    • Lesson 12: Application of Statistics in Business

      17:25Preview
      • 12.01 Learning Objectives
        00:53
      • 12.02 How to Use Statistics In Day to Day Business
        03:29
      • 12.03 Example: How to Not Lie With Statistics
        02:34
      • 12.04 How to Not Lie With Statistics
        01:49
      • 12.05 Lying Through Visualizations
        02:15
      • 12.06 Lying About Relationships
        03:31
      • 12.07 Recap
        01:06
      • 12.08 Spotlight
        01:48
    • Lesson 13: Assisted Practice

      11:47Preview
      • Assisted Practice: Problem Statement
        02:10
      • Assisted Practice: Solution
        09:37

Industry Project

  • Project 1

    Products rating prediction for Amazon

    Help Amazon, a US-based e-commerce company, improve its recommendation engine by predicting ratings for the non-rated products and adding them to recommendations accordingly.

    Products rating prediction for Amazon
  • Project 2

    Demand Forecasting for Walmart

    Predict accurate sales for 45 Walmart stores, considering the impact of promotional markdown events. Check if macroeconomic factors have an impact on sales.

    Demand Forecasting for Walmart
  • Project 3

    Improving customer experience for Comcast

    Provide Comcast, a US-based global telecom company, key recommendations to improve customer experience by identifying and improving problem areas that lower customer satisfaction.

    Improving customer experience for Comcast
  • Project 4

    Attrition Analysis for IBM

    IBM, a leading US-based IT company, wants to identify the factors that influence employee attrition by building a logistics regression model that can help predict employee churn.

    Attrition Analysis for IBM
prevNext

Data Science with R Exam & Certification

Data Science with R Certification Training Course in Delhi
  • Who provides the certification?

    Upon successful completion of the Data Science with R Programming course in Delhi, you will receive a course completion certificate from Simplilearn.

  • What do I need to do to unlock my Simplilearn certificate?

    Online Classroom:
    • You need to attend one complete batch of Data Science with R Programming Training in Delhi.
    • You must finish one related project
    Online Self-Learning:
    • You have to complete 85% of the Data Science with R Programming Training in Delhi.
    • You must successfully complete one project

  • How long does it take to complete the Data Science with R Programming Training in Delhi?

    It takes around 40 hours to successfully finish the Data Science with R Programming Training in Delhi.

  • How long is the Data Science with R certificate from Simplilearn valid for?

    Your Data Science with R Programming Training in Delhi certificate from Simplilearn stays valid indefinitely.

  • How many attempts do I have to pass the Data Science with R certification exam?

    You get three attempts to pass your Data Science with R certification exam. Simplilearn’s Data Science with R Programming Training in Delhi will also provide you with support and guidance to help you pass the exam in just one go!

  • If I pass the Data Science with R certification exam, when and how do I receive my certificate?

    After you successfully finish your Data Science with R Programming Training in Delhi and clear the exam, you receive your completion certificate through your Learning Management System (LMS). Download the certificate or share it via Linkedin or email. It’s up to you!

  • If I fail the Data Science with R certification exam how soon can I retake it?

    You can attempt to take the tests again immediately.

  • Do you provide any practice tests as part of Data Science with R Programming Training in Delhi?

    We sure do! We provide you with a practice test as part of Data Science with R Programming Training in Delhi to help get you ready for the actual certification exam. See these free R Programming practice questions to help you get a better idea about the kind of tests you’ll encounter in the curriculum.

R Certification Course Reviews

  • Sheetal Nagpal

    Sheetal Nagpal

    Delhi

    My trainer was very engaging and knowledgeable. I liked her way of teaching - sharing notes and providing hands-on practical's within the training sessions. She also shared real-life examples, and a SWOT analysis during the stat test, which I thought was a fantastic idea. Project mentoring cleared all our doubts related to the project.

  • Rohit Kumar

    Rohit Kumar

    Consultant, Delhi

    I really loved the way Shubham elaborates the R programming concepts, how he starts from the basics and then gradually picks up the pace.

  • Tanvi Malhotra

    Tanvi Malhotra

    Lead Business Analyst at American Express, Delhi

    I love the fact that the trainer has worked an extra mile to create a practice session for us -- it's helpful!

  • Rahul Jain

    Rahul Jain

    MBA Candidate - Fore School Of Management, Delhi

    This course helped me to understand the fundamentals of analytics and at the same time apply those concepts in real world problem via case studies which gave me the detailed understanding of Analytics, R and SAS concepts

  • Kumar Anurag

    Kumar Anurag

    Digital Team Lead at Microsoft, Delhi

    I liked the way the sessions were conducted.

  • Anubhav Ingole

    Anubhav Ingole

    Project Management Officer (PMO)/Business Analyst, Nagpur

    My instructor, Rajneesh, made the class very interactive. He explained each topic with real-life examples and analogies. I sincerely thank him for the effort he is putting into making a difference.

  • Amol B

    Amol B

    Bangalore

    Simplilearn has designed the course in a systematic manner. It has its own UI to code the programs. In fact, the algorithm and its applications have been done in the most logical way. Thanks, Simplilearn

  • Lavanya Krishnan

    Lavanya Krishnan

    RePM consultant, Bangalore

    My instructor Shilesh gave me a lot of hands-on training and made us use the R-platform in ways that were practical and useful. It was indeed a good course.

  • Puneeta C.

    Puneeta C.

    Student at Rajasthan Technical University, Bangalore

    Simplilearn is the best platform to provide Data Science with R programming. Its projects and assignments are amazing. Keep Learning. Thank You

  • Sabyasachi Guharoy

    Sabyasachi Guharoy

    Solution Architect - Testing at Capgemini Technology Services India Pvt., Bangalore

    I enrolled in Simplilearn for an Online Self Learning course on Data Science with R Programming. The LMS interface is very user-friendly and the course material is lucid and easy to understand. I have enjoyed my learning experience with Simplilearn

  • Ashish Ranjan

    Ashish Ranjan

    Data Scientist at Accenture, Pune

    Simplilearn is a good platform for starting data science knowledge. This course has helped me to get a rise from a Business Analyst to a Data Scientist.

  • Ajeya Kumar

    Ajeya Kumar

    Associate Director at IHS Markit, Bangalore

    The trainer is excellent. Real-time experiences shared during training are very helpful. Overall I am very happy with the training.

  • Nisar Pasha

    Nisar Pasha

    Student at Miracle educational society, Visakhapatnam

    I have enrolled in Data science with R from Simplilearn. It was a great experience. Their lab access was really helpful. If you are looking for a bright future in your career, go ahead and enroll yourself in online certification training courses for professionals from Simplilearn.

  • Sachin Shelar

    Sachin Shelar

    Project Lead at Capgemini, Mumbai

    I took Data Science with R programming from Simplilearn, and it's amazing. It certainly added value to my career. The trainer conducted the sessions very nicely and made the learning easy and interesting. Great job Simplilearn!

  • Samir Swarup

    Samir Swarup

    Associate Software Architect at UST Global, Bangalore

    I have enrolled in Data Science with R Programming at Simplilearn. I had a very good experience with them. Their response time is very fast and extremely helpful in resolving my issues. Highly recommended.

prevNext

Why Join this Program

  • Develop skills for real career growthCutting-edge curriculum designed in guidance with industry and academia to develop job-ready skills
  • Learn from experts active in their field, not out-of-touch trainersLeading practitioners who bring current best practices and case studies to sessions that fit into your work schedule.
  • Learn by working on real-world problemsCapstone projects involving real world data sets with virtual labs for hands-on learning
  • Structured guidance ensuring learning never stops24x7 Learning support from mentors and a community of like-minded peers to resolve any conceptual doubts

R Certification Training FAQs

  • What is R programming?

    R is a programming language and free software developed in 1993, made up of a collection of libraries architectured especially for data science. As a tool, R is considered to be clear and accessible.

  • How do beginners learn R online?

    Anyone who is looking to get started in IT or willing to further their IT career should consider learning R. We at Simplilearn have compiled an extensive content for Data Science beginners, along with supporting blogs and YouTube videos to help you understand the Data Science basics and importance of R in the dynamic field of data science.

  • Can I learn Data Science with R online?

    Learning methodologies have evolved tremendously with the influx of new technology. These changes have increased the ease and efficiency of learning on your terms. Simplilearn's Data Science with R Certification training provides live classes and round-the-clock access to study materials with the help of our learning management system. Our extensive collection of blogs, tutorials, and YouTube videos will help you brush up on the concepts. Even when your class ends, we provide a 24/7 support system to help you with any questions, concerns, or difficulties you may have.

  • Should I learn R or Python programming for a Data Science career?

    R and Python are the top languages that professionals learn to start a career in Data Science. Both languages are powerful and have their own pros and cons. So, depending on which language is used for data science projects in your organization and what can help you in the long run, you can make a choice.

    Simplilearn also provides Data Science with Python course which builds a strong foundation in data science and imparts all the valuable skills that employers look for in a data scientist.

  • Why should I learn R programming?

    Data Science is one of the popular career domains among professionals that offers high earning potential. It mostly comprises statistics and R is the bridging language of this domain and is widely used for data analysis. By learning R programming, you can enter the world of business analytics and data visualization. It is a must-have skill for all those aspiring to become a Data Scientist.

  • What is the market trend for Data Science in the Delhi?

    According to TeamLease, a staffing solutions company, a data scientist with an average working experience of about 5 years has the potential to earn about 75 lakhs per annum, while CAs with the same level of experience earn about 8-15 lakhs and engineers earn 5-8 lakhs. If this salary trend is anything to go by, then the demand for data professionals has never been higher. 

    In 2017, a report by Analytics India Magazine highlighted the rising trend of data-oriented jobs. According to this report, the number of Data Science jobs in India almost doubled in 2017, and over 50,000 positions are yet to be filled. With regard to Indian cities, Delhi holds the title of having the highest number of analytics jobs in India. In 2017, over 25% of all analytics jobs originated in Delhi. According to Gartner, the self-learning (ML-powered) intelligent systems will continue to reign supreme in the technology marathon through 2020.

  • What are the top companies offering Data Scientist jobs in Delhi?

    Several companies in Delhi are on the lookout for R Certified Data Scientists. According to Naukri, some of the top companies looking out for Data Science professionals in Delhi are Facebook, IBM, Microsoft, Capital One, Airbnb, PWC, Uber, Apple, Twitter, Linkedin, Cognizant and much more.

  • What is the average salary for R certified Data Scientist in Delhi?

    According to Payscale, Data Science professionals in Delhi can earn an average of 8 lakhs per year. However, a certified data science professional with experience can earn up 15 lakhs per annum.

  • What are the system requirements?

    You will need to download R from the CRAN website and RStudio for your operating system. These are both open source and the installation guidelines are presented in the R course curriculum.

  • Who are our instructors and how are they selected?

    All of our highly qualified R course trainers are industry Data Science experts with at least 10-12 years of relevant teaching experience. Each of these R programming certificate course trainers has gone through a rigorous selection process that includes profile screening, technical evaluation, and a training demo before they are certified to train for us. We also ensure that only those trainers with a high alumni rating remain on our faculty.

  • What training formats are used for this R course?

    We offer this Data Science with R training in the following formats:

    Live Virtual Classroom or Online Classroom: With online classroom training, you have the option to attend the R course remotely from your desktop via video conferencing. This format reduces productivity challenges and decreases your time spent away from work or home.

    Online Self-Learning: In this mode, you’ll receive lecture videos that you can view at your own pace.

  • What if I miss a class?

    We record the R training sessions and provide them to participants after the session is conducted. If you miss a class, you can view the recording before the next class session.

  • How do I enroll for this Data Science with R certification training?

    You can enroll in this Data Science with R certification training on our website and make an online payment using any of the following options:

    • Visa Credit or Debit Card
    • MasterCard
    • American Express
    • Diner’s Club
    • PayPal

    Once payment is received you will automatically receive a payment receipt and access information via email.

  • I’d like to learn more about this Data Science with R course. Whom should I contact?

    Contact us using the form on the right of any page on the Simplilearn website, or select the Live Chat link. Our customer service representatives can provide you with more details.

  • What is Global Teaching Assistance?

    Our teaching assistants are a dedicated team of subject matter experts here to help you get certified in R programming in your first attempt. They engage students proactively to ensure the course path is being followed and help you enrich your learning experience, from class onboarding to project mentoring and job assistance. Teaching Assistance is available during business hours.

  • What is covered under the 24/7 Support promise?

    We offer 24/7 support through email, chat, and calls. We also have a dedicated team that provides on-demand assistance through our community forum. What’s more, you will have lifetime access to the community forum, even after completion of your R training with us.

  • What is online classroom training?

    Online classroom training for Data science with R certification course is conducted via online live streaming of each class. The classes are conducted by a Data Science certified trainer with more than 15 years of work and training experience.

  • Is this live training, or will I watch pre-recorded videos?

    If you enroll for self-paced e-learning, you will have access to pre-recorded videos. If you enroll for the online classroom Flexi Pass, you will have access to live Data Science Certification with R programming training conducted online as well as the pre-recorded videos.

  • Are the training and course material effective in preparing me for the Data Science with R certification exam?

    Yes, Simplilearn’s training and course materials guarantee success with the Data Science with R certification exam.

  • *Disclaimer

    *The projects have been built leveraging real publicly available data-sets of the mentioned organizations.

  • Disclaimer
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, OPM3 and the PMI ATP seal are the registered marks of the Project Management Institute, Inc.