As the world gets more globally connected, we see massive amounts of data generated at every turn. Companies large and small work with data to gain insight and make critical business decisions. For this data to be useful, however, it must be properly analyzed. Data analysis involves taking raw data and adding it to user-friendly data visualization dashboards.
Master data visualization, business intelligence tool and advance your career in analytics with the Tableau Certification Training Course. Enroll now.
Data visualization is the graphical representation of raw data using visual elements like charts, graphs, and maps. A visual depiction of this data can help analysts better understand and respond to data trends and patterns. It tells a detailed story that can be easily understood by an audience.
In the big-data ecosystem, massive amounts of information can be analyzed to make data-driven decisions that prevent losses and enhance a company's return on investment (ROI).
The purpose of data visualization is to organize available raw data from multiple sources and formats in a manner that is easy to understand. Data is then curated and represented in a more straightforward form. Any noise or irrelevant information is removed, while useful information is highlighted.
Data visualization powers decision making by answering these key questions:
As companies handle more data in real time, visualization becomes a key tool to make sense of the trillions of rows of data generated. While a delay can cost a company significant resources in manpower and money, practical data visualization tools can remove such losses while also increasing efficiencies.
Weather maps, real-time air-quality indices, annual income, and expense report spreadsheets, and Facebook page statistics are examples of data visualization. It is used in many other ways to help stakeholders make quick decisions.
Some common use cases include:
Data visualization for Health Intelligence
Candlestick Visualization in Finance
Data Visualization in Sales
There are many data visualization tools to choose from, whether you are a data scientist presenting findings to an audience or business intelligence (BI) user looking for a practical way to visualize large datasets. Tableau is one such tool. Created in 2003, the interactive data visualization software lets you create charts, graphs, maps, and graphics without using code. It can be installed as a desktop app for visual analytics or as a server solution for online and mobile reports. Tableau connects to almost any database to create compelling visualizations that can be shared with a simple click. It makes data analysis fast with its dashboards and worksheets, which has made it a popular choice in all industry sectors.
The rich, intuitive BI Tableau dashboard gives senior executives and data scientists a simple way to tap into large datasets for visualization and reports within minutes. Because of this, Tableau has emerged as the preferred BI software for presentations, reports, and actionable insights. It also allows nontechnical users to publish interactive data visualizations on any topic, as well as create customized dashboards.
Tableau10 runs 100 times faster than existing solutions and can be integrated with the R programming language for a seamless visual analytics interface, making the exploration of complex data much simpler.
So what else makes Tableau the top data visualization choice for most businesses?
Aside from data visualization, Tableau is useful for data mining, data cleaning, statistical computations, and graphs. But like any tool, it is crucial to learn how to use it to take advantage of its many features. Here are ten tips for learning this powerful software
See how Tableau is applied in various scenarios and industries to see how it can be used.
Subscribe to Tableau-related lists, and follow other users within your industry who are applying Tableau to get their feedback on the design and user experience.
Check out guides and resources like the Tableau Reference Guide. Follow Twitter handles like @tableaupublic and @HighVizAbility and data visualization pages like Storytelling with Data, the Tableau blog, and other similar blogs.
Check out this list of data visualization books from Tableau or read one of these starter books to learn the software:
Tableau helps piece together information and unify it into an informative, visually appealing data story. Creating this calls for skill sets that include:
The best way to learn new software is to use it. Download and install the desktop version, and start exploring its features. Use Tableau Public to publish interactive data visualizations online. Download existing workbooks as a learning resource.
Use these free practice datasets, new contributed datasets, datasets shared on community forums, and this list of public datasets, and read these tips to look for free datasets to work within Tableau. Search Kaggle for open data to use as practice.
Practice your data visualization skills by building an online Tableau portfolio and starting a dashboard project. Use the active Tableau Public Gallery for inspiration.
Share links to your dashboard or post them to GitHub repositories, and explain your method. Look at your project from a fresh viewpoint by getting suggestions and feedback from the active Tableau community.
Engage with a Tableau user group, and meet local Tableau users. Refer to this map to find a group near you. Also, join Facebook groups for community insight.
Test your test your Tableau skills and practice well to your clear the exam with the Tableau Certification Exam Practice Test. Start answering!
Because of its wide adoption across industries and applications, demand is high for Tableau certification. Watch some of Tableau's videos, check out available training through LinkedIn, or consider certification through Simplilearn, where you can master the desktop version and prepare for the Tableau Desktop 10 Qualified Associate Exam.
Take it one step further with Simplilearn's Masters Program in Data Science, where you can gain hands-on experience with not only Tableau but other essential tools like Hadoop and Spark, as well as programming languages like R and Python. No matter which one you choose, start training today to take your career to the next level.
Name | Date | Place | |
---|---|---|---|
Tableau Desktop 10 Qualified Associate Training | 20 Dec -18 Jan 2020, Weekdays batch | Your City | View Details |
Tableau Desktop 10 Qualified Associate Training | 10 Jan -1 Feb 2020, Weekdays batch | Atlanta | View Details |
Tableau Desktop 10 Qualified Associate Training | 25 Jan -16 Feb 2020, Weekend batch | Chicago | View Details |
Simplilearn is one of the world’s leading providers of online training for Digital Marketing, Cloud Computing, Project Management, Data Science, IT, Software Development, and many other emerging technologies.
Tableau Server 10 Qualified Associate
Tableau Desktop 10 Qualified Associate Training
*Lifetime access to high-quality, self-paced e-learning content.
Explore Course CategoryFree eBook: Secret to Unlocking Tableau's Hidden Potential
Top Tableau Interview Questions and Answers to Help You Prepare for your Next job
Why Learn Python? Reasons and Benefits of Learning Python
Free eBook: 21 Resources to Find the Data You Need
10 Awe-Inspiring Data Visualizations for the Data Science Geek
Why Learn Salesforce? A Complete Guide to Unlock Your Salesforce Career