Machine Learning Skills you will learn

  • Supervised and unsupervised learning
  • Time series modeling
  • Linear and logistic regression
  • Kernel SVM
  • KMeans clustering
  • Naive Bayes
  • Decision tree
  • Random forest classifiers
  • Boosting and Bagging techniques
  • Deep Learning fundamentals

Who should learn Machine Learning

  • Analytics Managers
  • Business Analysts
  • Information Architects
  • Developers

What you will learn in Machine Learning Basics Program

  • Machine Learning

    • Lesson 01 Course Introduction

      06:41
      • Course Introduction
        05:31
      • Accessing Practice Lab
        01:10
    • Lesson 02 Introduction to AI and Machine Learning

      19:36
      • 2.1 Learning Objectives
        00:43
      • 2.2 Emergence of Artificial Intelligence
        01:56
      • 2.3 Artificial Intelligence in Practice
        01:48
      • 2.4 Sci-Fi Movies with the Concept of AI
        00:22
      • 2.5 Recommender Systems
        00:45
      • 2.6 Relationship between Artificial Intelligence, Machine Learning, and Data Science: Part A
        02:47
      • 2.7 Relationship between Artificial Intelligence, Machine Learning, and Data Science: Part B
        01:23
      • 2.8 Definition and Features of Machine Learning
        01:30
      • 2.9 Machine Learning Approaches
        01:48
      • 2.10 Machine Learning Techniques
        02:21
      • 2.11 Applications of Machine Learning: Part A
        01:34
      • 2.12 Applications of Machine Learning: Part B
        02:11
      • 2.13 Key Takeaways
        00:28
      • Knowledge Check
    • Lesson 03 Data Preprocessing

      35:57
      • 3.1 Learning Objectives
        00:38
      • 3.2 Data Exploration Loading Files: Part A
        02:52
      • 3.2 Data Exploration Loading Files: Part B
        01:34
      • 3.3 Demo: Importing and Storing Data
        01:27
      • Practice: Automobile Data Exploration - A
      • 3.4 Data Exploration Techniques: Part A
        02:56
      • 3.5 Data Exploration Techniques: Part B
        02:47
      • 3.6 Seaborn
        02:18
      • 3.7 Demo: Correlation Analysis
        02:38
      • Practice: Automobile Data Exploration - B
      • 3.8 Data Wrangling
        01:27
      • 3.9 Missing Values in a Dataset
        01:55
      • 3.10 Outlier Values in a Dataset
        01:49
      • 3.11 Demo: Outlier and Missing Value Treatment
        04:18
      • Practice: Data Exploration - C
      • 3.12 Data Manipulation
        00:47
      • 3.13 Functionalities of Data Object in Python: Part A
        01:49
      • 3.14 Functionalities of Data Object in Python: Part B
        01:33
      • 3.15 Different Types of Joins
        01:32
      • 3.16 Typecasting
        01:23
      • 3.17 Demo: Labor Hours Comparison
        01:54
      • Practice: Data Manipulation
      • 3.18 Key Takeaways
        00:20
      • Knowledge Check
      • Storing Test Results
    • Lesson 04 Supervised Learning

      01:21:04
      • 4.1 Learning Objectives
        00:31
      • 4.2 Supervised Learning
        02:17
      • 4.3 Supervised Learning- Real-Life Scenario
        00:53
      • 4.4 Understanding the Algorithm
        00:52
      • 4.5 Supervised Learning Flow
        01:50
      • 4.6 Types of Supervised Learning: Part A
        01:54
      • 4.7 Types of Supervised Learning: Part B
        02:03
      • 4.8 Types of Classification Algorithms
        01:01
      • 4.9 Types of Regression Algorithms: Part A
        03:20
      • 4.10 Regression Use Case
        00:34
      • 4.11 Accuracy Metrics
        01:23
      • 4.12 Cost Function
        01:48
      • 4.13 Evaluating Coefficients
        00:53
      • 4.14 Demo: Linear Regression
        13:47
      • Practice: Boston Homes - A
      • 4.15 Challenges in Prediction
        01:45
      • 4.16 Types of Regression Algorithms: Part B
        02:40
      • 4.17 Demo: Bigmart
        21:55
      • Practice: Boston Homes - B
      • 4.18 Logistic Regression: Part A
        01:58
      • 4.19 Logistic Regression: Part B
        01:38
      • 4.20 Sigmoid Probability
        02:05
      • 4.21 Accuracy Matrix
        01:36
      • 4.22 Demo: Survival of Titanic Passengers
        14:07
      • Practice: Iris Species
      • 4.23 Key Takeaways
        00:14
      • Knowledge Check
      • Health Insurance Cost
    • Lesson 05 Feature Engineering

      27:52
      • 5.1 Learning Objectives
        00:27
      • 5.2 Feature Selection
        01:28
      • 5.3 Regression
        00:53
      • 5.4 Factor Analysis
        01:57
      • 5.5 Factor Analysis Process
        01:05
      • 5.6 Principal Component Analysis (PCA)
        02:31
      • 5.7 First Principal Component
        02:43
      • 5.8 Eigenvalues and PCA
        02:32
      • 5.9 Demo: Feature Reduction
        05:47
      • Practice: PCA Transformation
      • 5.10 Linear Discriminant Analysis
        02:27
      • 5.11 Maximum Separable Line
        00:44
      • 5.12 Find Maximum Separable Line
        03:12
      • 5.13 Demo: Labeled Feature Reduction
        01:53
      • Practice: LDA Transformation
      • 5.14 Key Takeaways
        00:13
      • Knowledge Check
      • Simplifying Cancer Treatment
    • Lesson 06 Supervised Learning Classification

      55:43
      • 6.1 Learning Objectives
        00:34
      • 6.2 Overview of Classification
        02:05
      • Classification: A Supervised Learning Algorithm
        00:52
      • 6.4 Use Cases of Classification
        02:37
      • 6.5 Classification Algorithms
        00:16
      • 6.6 Decision Tree Classifier
        02:17
      • 6.7 Decision Tree Examples
        01:45
      • 6.8 Decision Tree Formation
        00:47
      • 6.9 Choosing the Classifier
        02:55
      • 6.10 Overfitting of Decision Trees
        01:00
      • 6.11 Random Forest Classifier- Bagging and Bootstrapping
        02:22
      • 6.12 Decision Tree and Random Forest Classifier
        01:06
      • Performance Measures: Confusion Matrix
        02:21
      • Performance Measures: Cost Matrix
        02:06
      • 6.15 Demo: Horse Survival
        08:30
      • Practice: Loan Risk Analysis
      • 6.16 Naive Bayes Classifier
        01:28
      • 6.17 Steps to Calculate Posterior Probability: Part A
        01:44
      • 6.18 Steps to Calculate Posterior Probability: Part B
        02:21
      • 6.19 Support Vector Machines : Linear Separability
        01:05
      • 6.20 Support Vector Machines : Classification Margin
        02:05
      • 6.21 Linear SVM : Mathematical Representation
        02:04
      • 6.22 Non-linear SVMs
        01:06
      • 6.23 The Kernel Trick
        01:19
      • 6.24 Demo: Voice Classification
        10:42
      • Practice: College Classification
      • 6.25 Key Takeaways
        00:16
      • Knowledge Check
      • Classify Kinematic Data
    • Lesson 07 Unsupervised Learning

      28:26
      • 7.1 Learning Objectives
        00:29
      • 7.2 Overview
        01:48
      • 7.3 Example and Applications of Unsupervised Learning
        02:17
      • 7.4 Clustering
        01:49
      • 7.5 Hierarchical Clustering
        02:28
      • 7.6 Hierarchical Clustering Example
        02:01
      • 7.7 Demo: Clustering Animals
        05:39
      • Practice: Customer Segmentation
      • 7.8 K-means Clustering
        01:46
      • 7.9 Optimal Number of Clusters
        01:24
      • 7.10 Demo: Cluster Based Incentivization
        08:32
      • Practice: Image Segmentation
      • 7.11 Key Takeaways
        00:13
      • Knowledge Check
      • Clustering Image Data
    • Lesson 08 Time Series Modeling

      37:44
      • 8.1 Learning Objectives
        00:24
      • 8.2 Overview of Time Series Modeling
        02:16
      • 8.3 Time Series Pattern Types: Part A
        02:16
      • 8.4 Time Series Pattern Types: Part B
        01:19
      • 8.5 White Noise
        01:07
      • 8.6 Stationarity
        02:13
      • 8.7 Removal of Non-Stationarity
        02:13
      • 8.8 Demo: Air Passengers - A
        14:33
      • Practice: Beer Production - A
      • 8.9 Time Series Models: Part A
        02:14
      • 8.10 Time Series Models: Part B
        01:28
      • 8.11 Time Series Models: Part C
        01:51
      • 8.12 Steps in Time Series Forecasting
        00:37
      • 8.13 Demo: Air Passengers - B
        05:01
      • Practice: Beer Production - B
      • 8.14 Key Takeaways
        00:12
      • Knowledge Check
      • IMF Commodity Price Forecast
    • Lesson 09 Ensemble Learning

      35:41
      • 9.01 Ensemble Learning
        00:24
      • 9.2 Overview
        02:41
      • 9.3 Ensemble Learning Methods: Part A
        02:28
      • 9.4 Ensemble Learning Methods: Part B
        02:37
      • 9.5 Working of AdaBoost
        01:43
      • 9.6 AdaBoost Algorithm and Flowchart
        02:28
      • 9.7 Gradient Boosting
        02:36
      • 9.8 XGBoost
        02:23
      • 9.9 XGBoost Parameters: Part A
        03:15
      • 9.10 XGBoost Parameters: Part B
        02:30
      • 9.11 Demo: Pima Indians Diabetes
        04:14
      • Practice: Linearly Separable Species
      • 9.12 Model Selection
        02:08
      • 9.13 Common Splitting Strategies
        01:45
      • 9.14 Demo: Cross Validation
        04:18
      • Practice: Model Selection
      • 9.15 Key Takeaways
        00:11
      • Knowledge Check
      • Tuning Classifier Model with XGBoost
    • Lesson 10 Recommender Systems

      25:45
      • 10.1 Learning Objectives
        00:28
      • 10.2 Introduction
        02:17
      • 10.3 Purposes of Recommender Systems
        00:45
      • 10.4 Paradigms of Recommender Systems
        02:45
      • 10.5 Collaborative Filtering: Part A
        02:14
      • 10.6 Collaborative Filtering: Part B
        01:58
      • 10.7 Association Rule Mining
        01:47
      • Association Rule Mining: Market Basket Analysis
        01:43
      • 10.9 Association Rule Generation: Apriori Algorithm
        00:53
      • 10.10 Apriori Algorithm Example: Part A
        02:11
      • 10.11 Apriori Algorithm Example: Part B
        01:18
      • 10.12 Apriori Algorithm: Rule Selection
        02:52
      • 10.13 Demo: User-Movie Recommendation Model
        04:19
      • Practice: Movie-Movie recommendation
      • 10.14 Key Takeaways
        00:15
      • Knowledge Check
      • Book Rental Recommendation
    • Lesson 11 Text Mining

      43:58
      • 11.1 Learning Objectives
        00:22
      • 11.2 Overview of Text Mining
        02:11
      • 11.3 Significance of Text Mining
        01:26
      • 11.4 Applications of Text Mining
        02:23
      • 11.5 Natural Language ToolKit Library
        02:35
      • 11.6 Text Extraction and Preprocessing: Tokenization
        00:33
      • 11.7 Text Extraction and Preprocessing: N-grams
        00:55
      • 11.8 Text Extraction and Preprocessing: Stop Word Removal
        01:24
      • 11.9 Text Extraction and Preprocessing: Stemming
        00:44
      • 11.10 Text Extraction and Preprocessing: Lemmatization
        00:35
      • 11.11 Text Extraction and Preprocessing: POS Tagging
        01:17
      • 11.12 Text Extraction and Preprocessing: Named Entity Recognition
        00:54
      • 11.13 NLP Process Workflow
        00:53
      • 11.14 Demo: Processing Brown Corpus
        10:05
      • Wiki Corpus
      • 11.15 Structuring Sentences: Syntax
        01:54
      • 11.16 Rendering Syntax Trees
        00:55
      • 11.17 Structuring Sentences: Chunking and Chunk Parsing
        01:38
      • 11.18 NP and VP Chunk and Parser
        01:39
      • 11.19 Structuring Sentences: Chinking
        01:44
      • 11.20 Context-Free Grammar (CFG)
        01:56
      • 11.21 Demo: Structuring Sentences
        07:46
      • Practice: Airline Sentiment
      • 11.22 Key Takeaways
        00:09
      • Knowledge Check
      • FIFA World Cup
    • Lesson 12 Project Highlights

      02:40
      • Project Highlights
        02:40
      • Uber Fare Prediction
      • Amazon - Employee Access
    • Practice Projects

      • California Housing Price Prediction
      • Phishing Detector with LR

Why you should learn Machine Learning

$8.81 billion

Expected machine learning market growth by 2022

44.1% growth

In the adoption of machine learning in organizations

Career Opportunities

FAQs

  • What are the prerequisites to learn the Machine Learning basics program?

    Prior knowledge of basic mathematics, statistics, and Python programming is beneficial to take this machine learning basics course.

  • How do beginners learn Machine Learning basics?

    Beginners often rely on online tutorials or to learn the fundamentals of Machine Learning. For a reliable start in this field, Simplilearn’s Machine Learning fundamentals course is an excellent option.

  • How long does it take to learn Machine Learning?

    The time required to learn machine learning varies for every learner depending on their educational background and prior exposure in the field. The 7 hours of online content covered in this course will surely help you get the basics right in a short amount of time.

  • What should I learn first in the Machine Learning basics program?

    Professionals who wish to start with Machine Learning first get a complete overview of Artificial Intelligence, its applications and how various industries are using it. Then they learn about Machine Learning, its approaches and techniques.

  • Is the Machine Learning foundations program easy to learn?

    Simplilearn curates all of its courses as per the learners’ needs. Even if you don’t have any prior idea of Machine Learning, it will be easy for you to follow the video lessons covered in this Machine Learning fundamentals program.

  • What are the basics in a Machine Learning foundations training program?

    A Machine Learning foundations training program starts with the basics like how Machine Learning is related to artificial intelligence, common terminologies in this field, and types of Machine Learning - supervised, unsupervised, and reinforced.

  • What is Machine Learning?

    Machine Learning is an integral branch of Artificial Intelligence (AI). Applications in ML learn from experience like humans — in this case, from data — without any direct programming. Every time Machine Learning applications are exposed to new data, they learn and retrain themselves by leveraging algorithms in an iterative process.

  • What is Machine Learning used for?

    Machine Learning is used to make systems capable of learning on their own and improving their actions by taking feedback from past experiences, just like humans do. As Machine Learning facilitates the analysis of huge amounts of data, companies use it to get faster and more accurate results and earn greater profits.

  • Why learn Machine Learning?

    Machine Learning is the technology that has revolutionized the way we live in the 21st century.  Self-driving cars, cyber fraud detection, and online recommendation engines from Facebook, Spotify Netflix, and Amazon are all applications of machine learning. According to a recent report from TMR, MLaaS (Machine learning as a Service) is expected to grow to $19.9 billion by the end of 2025. Almost every customer-centric organization today is en route to AI adoption in some form or another. This has led to a simultaneous surge in the demand for trained machine learning engineers across top enterprises worldwide — meaning that now is the time to learn machine learning. For more information, watch this video.

  • Who can learn Machine Learning?

    You can learn Machine Learning if you are one of the following professionals:

    • Analytics Manager
    • Business Analyst
    • Information Architect
    • Developer

  • Can I complete this Machine Learning foundations program in 90 days?

    Following at your own pace, you can comfortably complete the course within 90 days.

  • Will I get a certificate after completing the Machine Learning basics program?

    You will not receive a course completion certificate after completing the Machine Learning basics program. However, you can upgrade and enroll for the paid version of the course to earn your certificate.

  • What are my next best learning options after completing this Machine Learning fundamentals program?

    After completing this Machine Learning basics training program, you can learn advanced concepts with other courses like Artificial Intelligence Engineer Master’s Program or Post Graduate Program in AI and Machine Learning.

  • What are the career opportunities in Machine Learning?

    The knowledge of Machine Learning comes in handy for many evolving job roles like data scientist, data analyst, Machine Learning engineer or AI engineer. We are just in the initial stages of AI adoption and the future looks promising for Machine Learning professionals. Many companies are seeking skilled candidates in this domain for their AI-powered projects.

  • Disclaimer
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.