Driven by the proliferation of internet-connected sensors and devices, the world today is producing data at a dramatic pace, like never before. While one part of the globe is sleeping, the other part is beginning its day with Skype meetings, web searches, online shopping, and social media interactions. This literally means that data generation, on a global scale, is a never-ceasing process.

A report published by cloud software company DOMO on the amount of data that the virtual world generates per minute will shock any person. According to DOMO's study, each minute, the Internet population posts 511,200 tweets, watches 4,500,000 YouTube videos, creates 277,777 Instagram stories, sends 4,800,000 gifs, takes 9,772 Uber rides, makes 231,840 Skype calls, and transfers more than 162,037 payments via mobile payment app, Venmo.

With such massive volumes of digital data being captured every minute, most forward-looking organizations are keen to leverage advanced methodologies to extract critical insights from data, which facilitates better-informed decisions that boost profits. This is where data mining tools and technologies come into play.

Professional Certificate Program in Data Science

The Ultimate Ticket To Top Data Science Job RolesExplore Course
Professional Certificate Program in Data Science

What Is Data Mining?

Data mining involves a range of methods and approaches to analyze large sets of data to extract business insights. Data mining starts soon after the collection of data in data warehouses, and it covers everything from the cleansing of data to creating a visualization of the discoveries gained from the data.

Also known as "Knowledge Discovery," data mining typically refers to in-depth analysis of vast datasets that exist in varied emerging domains, such as Artificial Intelligence, Big Data, and Machine Learning. The process searches for trends, patterns, associations, and anomalies in data that enable enterprises to streamline operations, augment customer experiences, predict the future, and create more value.

The key stages involved in data mining include:

  • Anomaly detection
  • Dependency modeling
  • Clustering
  • Classification
  • Regression
  • Report generation

Top Data Mining Tools You Need to Know in 2023

Data scientists employ a variety of data mining tools and techniques for different types of data mining tasks, such as cleaning, organizing, structuring, analyzing, and visualizing data. Here's a list of both paid and open-source data mining tools you should know about in 2023.

1. Apache Mahout

One of the best open-source data mining tools on the market, Apache Mahout, developed by the Apache Foundation, primarily focuses on collaborative filtering, clustering, and classification of data. Written in the object-oriented, class-based programming language JAVA, Apache Mahout incorporates useful JAVA libraries that help data professionals perform diverse mathematical operations, including statistics and linear algebra.

The top features of Apache Mahout are:

  • Versatile programming environment
  • Pre-built algorithms
  • Scope for mathematical analysis
  • The Graphics Processing Unit (GPU) measures performance improvement

2. Dundas BI

Dundas BI is one of the most comprehensive data mining tools used to generate quick insights and facilitate rapid integrations. The high-caliber data mining software leverages relational data mining methods, and it places more emphasis on developing clearly-defined data structures that simplify the processing, analysis, and reporting of data.

Key features of Dundas BI include:

  • Visually-appealing dashboard
  • Data accessibility from multiple devices
  • Multidimensional data analysis
  • Reliable reports
  • Eliminates the need for additional software
  • Integrates attractive graphs, tables, and charts

3. Teradata

Teradata, also known as the Teradata Database, is a top-rated data mining tool that features an enterprise-grade data warehouse for seamless data management and data mining. The market-leading data mining software, which can differentiate between "cold" and "hot" data, is predominately used to get insights into business-critical data related to customer preferences, product positioning, and sales.

Learn Data Science with R for FREE

Learn and Master the Basics of Data Science with REnroll Now
Learn Data Science with R for FREE

The main attributes of Teradata are:

  • Ideal for cutting-edge business analytics
  • Competitive pricing
  • Implements a zero-sharing architecture
  • Has server nodes with memory and processing capabilities

4. SAS Data Mining

The SAS Data Mining Tool is a software application developed by the Statistical Analysis System (SAS) Institute for high-level data mining, analysis, and data management. Ideal for text mining and optimization, the widely-adopted tool can mine data, manage data, and do statistical analysis to provide users with accurate insights that facilitate timely and informed decision-making.

Some of the core features of the SAS Data Mining Tool include:

  • Graphical User Interface (UI)
  • Distributed architecture
  • High scalability

5. SPSS Modeler

The SPSS Modeler software suite was originally owned by SPSS Inc. but was later acquired by the International Business Machines Corporation (IBM). The SPSS software, which is now an IBM product, allows users to use data mining algorithms to develop predictive models without any programming. The popular data mining tool is available in two flavors - IBM SPSS Modeler Professional and IBM SPSS Modeler Premium, incorporating additional features for entity analytics and text analytics.

The primary features of IBM SPSS Modeler are:

  • Aesthetically-pleasing user interface
  • Eliminates unnecessary complexity
  • Highly scalable

6. DataMelt

One of the most well-known open-source data mining tools written in JAVA, DataMelt integrates a state-of-the-art visualization and computational platform that makes data mining easy. The all-in-one DataMelt tool, integrating robust mathematical and scientific libraries, is mainly used for statistical analysis and data visualization in domains dealing with massive data volumes, such as financial markets.

The most prominent DataMelt features include:

  • Interactive framework
  • Enables the creation of 2D and 3D plots
  • Runs on any Java Virtual Machine (JVM) compatible operating system

7. Rattle

A GUI-based, open-source data mining tool, Rattle leverages the R programming language's powerful statistical computing abilities to deliver valuable, actionable insights. With Rattle's built-in code tab, users can create duplicate code for GUI activities, review it, and extend the log code without any restrictions.

Key features of the Rattle data mining tool include:

  • Extensive data mining functionalities
  • Impressive, well-designed UI
  • Free and open source
  • Allows easy viewing and editing of datasets

8. Oracle Data Mining

One of the most-trusted data mining tools on the market, Oracle's data mining platform, powered by the Oracle database, provides data analysts with top-notch algorithms for specialized analytics, data classification, prediction, and regression, enabling them to uncover insightful data patterns that help make better market predictions, detect fraud, and identify cross-selling opportunities.

The main strengths of Oracle's data mining tool are:

  • Data mining algorithms leverage the strong capabilities of the Oracle database
  • Allows users to drop and drag data to and from the database
  • Makes use of Structured Query Language (SQL)
  • Unmatched scalability

9. Sisense

Fit for both small and large enterprises, Sisense allows data analysts to combine data from multiple sources to develop a repository. The first-rate data mining tool incorporates widgets as well as drag and drop features, which streamline the process of refining and analyzing data. Users can select different widgets to quickly generate reports in a variety of formats, including line charts, bar graphs, and pie charts.

Highlights of the Sisense data mining tool are:

  • Powerful user interface
  • Visually-attractive reports
  • One-click sharing of reports across the organization
  • Flexible environment
Get broad exposure to key technologies and skills used in data analytics and data science, including statistics with the Data Analytics Bootcamp.

Want to Acquire the Most In-Demand Computing Skills?

The demand for data professionals who know how to mine data is on the rise. On the one hand, there is an abundance of job opportunities and, on the other, a severe talent shortage. To make the most of this situation, gain the right skills, and get certified by an industry-recognized institution like Simplilearn.

The world's #1 online bootcamp and certification course provider, Simplilearn, in association with internationally-renowned Purdue University and tech-giant IBM, is offering a Data Science Bootcamp that will enable you to become a data scientist in just twelve months.

Ranked number-one by the Economic Times, Simplilearn's Data Science Program covers in great detail the most in-demand skills related to data mining and data analytics, such as machine learning algorithms, data visualization, NLP concepts, Tableau, R, and Python, via interactive learning models, hands-on training, industry projects, and IBM Hackathons. Sign up now to get noticed by top companies.

About the Author


Simplilearn is one of the world’s leading providers of online training for Digital Marketing, Cloud Computing, Project Management, Data Science, IT, Software Development, and many other emerging technologies.

View More
  • Disclaimer
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.