Data Science vs. Big Data vs. Data Analytics

Data is everywhere. The amount of digital data that exists is growing at a rapid rate, doubling every two years, and changing the way we live. An article by Forbes states that data is growing faster than ever before. By the year 2020, about 1.7 megabytes of new information will be created every second for every human being on the planet, which makes it extremely important to know the basics of the field at least. After all, here is where our future lies.

In this article, we will differentiate between the Data Science, Big Data, and Data Analytics, based on what it is, where it is used, the skills you need to become a professional in the field, and the salary prospects in each field.

Looking forward to becoming a Data Scientist? Check out the Data Scientist Masters Program and get certified today.

Let’s first start with understanding what these concepts are.

What is Data Science?

Dealing with unstructured and structured data, Data Science is a field that comprises everything that related to data cleansing, preparation, and analysis.

Data Science is the combination of statistics, mathematics, programming, problem-solving, capturing data in ingenious ways, the ability to look at things differently, and the activity of cleansing, preparing, and aligning the data.

In simple terms, it is the umbrella of techniques used when trying to extract insights and information from data.

What is Big Data?

Big Data refers to humongous volumes of data that cannot be processed effectively with the traditional applications that exist. The processing of Big Data begins with the raw data that isn’t aggregated and is most often impossible to store in the memory of a single computer.

A buzzword that is used to describe immense volumes of data, both unstructured and structured, Big Data inundates a business on a day-to-day basis. Big Data is something that can be used to analyze insights that can lead to better decisions and strategic business moves.

The definition of Big Data, given by Gartner, is, “Big data is high-volume, and high-velocity or high-variety information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation.”

What is Data Analytics?

Data Analytics the science of examining raw data to conclude that information.

Data Analytics involves applying an algorithmic or mechanical process to derive insights and, for example, running through several data sets to look for meaningful correlations between each other.

It is used in several industries to allow organizations and companies to make better decisions as well as verify and disprove existing theories or models. The focus of Data Analytics lies in inference, which is the process of deriving conclusions that are solely based on what the researcher already knows.

Now, let us move to applications of Data Science, Big Data and Data Analytics.

Post Graduate Program in Data Science

In Partnership with Purdue UniversityExplore Course

Applications of Data Science

  • Internet Search

    Search engines make use of data science algorithms to deliver the best results for search queries in a fraction of seconds.
  • Digital Advertisements

    The entire digital marketing spectrum uses the data science algorithms - from display banners to digital billboards. This is the mean reason for digital ads getting higher CTR than traditional advertisements.
  • Recommender Systems

    The recommender systems not only make it easy to find relevant products from billions of products available but also adds a lot to user-experience. A lot of companies use this system to promote their products and suggestions in accordance with the user’s demands and relevance of information. The recommendations are based on the user’s previous search results.

Applications of Big Data

  • Big Data for Financial Services

    Credit card companies, retail banks, private wealth management advisories, insurance firms, venture funds, and institutional investment banks use big data for their financial services. The common problem among them all is the massive amounts of multi-structured data living in multiple disparate systems, which can be solved by big data. Thus big data is used in several ways like: 

    1. Customer analytics
    2. Compliance analytics
    3. Fraud analytics
    4. Operational analytics
  • Big Data in Communications

    Gaining new subscribers, retaining customers, and expanding within current subscriber bases are top priorities for telecommunication service providers. The solutions to these challenges lie in the ability to combine and analyze the masses of customer-generated data and machine-generated data that is being created every day.
  • Big Data for Retail

    Brick and Mortar or an online e-tailer, the answer to staying the game and being competitive is understanding the customer better to serve them. This requires the ability to analyze all the disparate data sources that companies deal with every day, including the weblogs, customer transaction data, social media, store-branded credit card data, and loyalty program data.
Want to begin your career as a Big Data Engineer? Check out the Big Data Engineer Training Course and get certified.

Applications of Data Analytics

  • Healthcare

    The main challenge for hospitals with cost pressures tightens is to treat as many patients as they can efficiently, keeping in mind the improvement of the quality of care. Instrument and machine data are being used increasingly to track as well as optimize patient flow, treatment, and equipment used in the hospitals. It is estimated that there will be a 1% efficiency gain that could yield more than $63 billion in global healthcare savings.
  • Travel

    Data analytics can optimize the buying experience through mobile/ weblog and social media data analysis. Travel sights can gain insights into the customer’s desires and preferences. Products can be up-sold by correlating the current sales to the subsequent browsing increase browse-to-buy conversions via customized packages and offers. Personalized travel recommendations can also be delivered by data analytics based on social media data.
  • Gaming

    Data Analytics helps in collecting data to optimize and spend within as well as across games. Game companies gain insight into the dislikes, the relationships, and the likes of the users.
  • Energy Management

    Most firms are using data analytics for energy management, including smart-grid management, energy optimization, energy distribution, and building automation in utility companies. The application here is centered on the controlling and monitoring of network devices, dispatch crews, and manage service outages. Utilities are given the ability to integrate millions of data points in the network performance and lets the engineers use the analytics to monitor the network.

Big Data Engineer Master's Program

In Collaboration with IBMLearn More

Skills Required to Become a Data Scientist

  • Education: 88% have a Master’s Degree, and 46% have PhDs

  • In-depth knowledge of SAS or R: For Data Science, R is generally preferred.

  • Python coding: Python is the most common coding language that is used in data science, along with Java, Perl, C/C++.

  • Hadoop platform: Although not always a requirement, knowing the Hadoop platform is still preferred for the field. Having a bit of experience in Hive or Pig is also a huge selling point.

  • SQL database/coding: Though NoSQL and Hadoop have become a significant part of the Data Science background, it is still preferred if you can write and execute complex queries in SQL.

  • Working with unstructured data: It is essential that a Data Scientist can work with unstructured data, be it on social media, video feeds, or audio.

Skills Required to Become a Big Data Specialist

  • Analytical skills: The ability to be able to make sense of the piles of data that you get. With analytical skills, you will be able to determine which data is relevant to your solution, more like problem-solving.

  • Creativity: You need to have the ability to create new methods to gather, interpret, and analyze a data strategy. This is an extremely suitable skill to possess.

  • Mathematics and statistical skills: Good, old-fashioned “number crunching.” This is extremely necessary, be it in data science, data analytics, or big data.

  • Computer science: Computers are the workhorses behind every data strategy. Programmers will have a constant need to come up with algorithms to process data into insights.

  • Business skills: Big Data professionals will need to have an understanding of the business objectives that are in place, as well as the underlying processes that drive the growth of the business as well as its profit.

Skills Required to Become a Data Analyst

  • Programming skills: Knowing programming languages are R and Python are extremely important for any data analyst.

  • Statistical skills and mathematics: Descriptive and inferential statistics and experimental designs are a must for data scientists.

  • Machine learning skills

  • Data wrangling skills: The ability to map raw data and convert it into another format that allows for more convenient consumption of the data.

  • Communication and Data Visualization skills

  • Data Intuition: it is extremely important for a professional to be able to think like a data analyst.

Data Science Career Guide

A Comprehensive Guide To Becoming A Data ScientistDOWNLOAD GUIDE

Salary Trends

Though in the same domain, each of these professionals, data scientists, big data specialists, and data analysts, earn varied salaries.

Data Scientist Salary

According to Glassdoor, the average salary of a Data Scientist is $108,224 per year.

Big Data Specialist Salary

According to Glassdoor, the average salary of a Big Data Specialist is $106,784 per year.

Data Analyst Salary

According to Glassdoor, the average salary for a Data Analyst is $61,473 per year.

The salary increases as per the knowledge and expertise you bring to the table. 

Now that you know the differences, which one do you think is most suited for you – Data Science? Big Data? Or Data Analytics?

Simplilearn has dozens of data science, big data, and data analytics courses online, including our Integrated Program in Big Data and Data Science. If you’d like to become an expert in Data Science or Big Data – check out our Masters Program certification training courses: the Data Scientist Masters Program and the Big Data Engineer Masters Program.

With industry recommended learning paths, exclusive access to experts in the industry, hands-on project experience, and a Masters certificate on completion, these online courses will give you the need to excel in the desired fields and become an expert.

About the Author

Avantika MonnappaAvantika Monnappa

A project management and digital marketing knowledge manager, Avantika’s area of interest is project design and analysis for digital marketing, data science, and analytics companies.

View More
  • Disclaimer
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.