Data Encryption: Methods, Techniques, Types and Algorithms

Data encryption is a common and effective security method—a sound choice for protecting an organization’s information. However, there are a handful of different encryption methods available, so how do you choose?

In a world where cybercrimes are on the rise, it’s comforting to know that there are as many methods available to protect network security as there are ways of trying to penetrate it. The real challenge is deciding which techniques an internet security expert should employ that best suits their organization’s specific situation.

In this article we will learn the following topics in detail:

  • What is data encryption in network security?
  • How does data encryption work?
  • Why do we need data encryption?
  • The three important types of data encryption techniques
  • Encryption algorithms
  • More about cybersecurity
Learn the types of attacks on a system, the techniques used, and more with the Certified Ethical Hacking Course. Enroll now!

What is Data Encryption in Network Security?

Noted antivirus and endpoint security experts at Kaspersky define encryption as “… the conversion of data from a readable format into an encoded format that can only be read or processed after it's been decrypted.”

Cybersecurity Expert Master's Program

Master the Skills of a Cybersecurity ProfessionalView Course
Cybersecurity Expert Master's Program

They go on to say that encryption is considered the basic building block of data security, widely used by large organizations, small businesses, and individual consumers. It’s the most straightforward and crucial means of protecting information that passes from endpoints to servers.

Considering the elevated risk of cybercrime today, every person and group that uses the internet should be familiar with and incorporate basic encryption techniques, at the very least.

How Does Data Encryption Work?

A woman wants to send her boyfriend a personal text, so she encrypts it using specialized software that scrambles the data into what appears to be unreadable gibberish. She then sends the message out, and her boyfriend, in turn, uses the correct decryption to translate it.

Thus, what starts out looking like this:






…eventually looks like this:

“I accidentally saw your web browser history. You and I are done.”

Fortunately, the keys do all the actual encryption/decryption work, leaving both people more time to contemplate the smoldering ruins of their relationship in total privacy.

Next, in our learning about effective encryption methods, let us find out why we need encryption.

Why Do We Need Data Encryption?

If anyone wonders why organizations need to practice encryption, keep these four reasons in mind:

  • Authentication: Public key encryption proves that a website's origin server owns the private key and thus was legitimately assigned an SSL certificate. In a world where so many fraudulent websites exist, this is an important feature.
  • Privacy: Encryption guarantees that no one can read messages or access data except the legitimate recipient or data owner. This measure prevents cybercriminals, hackers, internet service providers, spammers, and even government institutions from accessing and reading personal data.
  • Regulatory Compliance: Many industries and government departments have rules in place that require organizations that work with users’ personal information to keep that data encrypted. A sampling of regulatory and compliance standards that enforce encryption include HIPAA, PCI-DSS, and the GDPR.
  • Security: Encryption helps protect information from data breaches, whether the data is at rest or in transit. For example, even if a corporate-owned device is misplaced or stolen, the data stored on it will most likely be secure if the hard drive is properly encrypted. Encryption also helps protect data against malicious activities like man-in-the-middle attacks, and lets parties communicate without the fear of data leaks.

Let us now find out the important types of data encryption methods.

The Three Important Types of Data Encryption Techniques

There are several data encryption approaches available to choose from. Most internet security (IS) professionals break down encryption into three distinct methods: symmetric, asymmetric, and hashing. These, in turn, are broken down into different types. We’ll explore each one separately.

What is the Symmetric Encryption Method?

Also called private-key cryptography or a secret key algorithm, this method requires the sender and the receiver to have access to the same key. So, the recipient needs to have the key before the message is decrypted. This method works best for closed systems, which have less risk of a third-party intrusion.

On the positive side, symmetric encryption is faster than asymmetric encryption. However, on the negative side, both parties need to make sure the key is stored securely and available only to the software that needs to use it.

What is the Asymmetric Encryption Method?

Also called public-key cryptography, this method uses two keys for the encryption process, a public and a private key, which are mathematically linked. The user employs one key for encryption and the other for decryption, though it doesn’t matter which you choose first.

FREE Course: Introduction to Cyber Security

Learn and master the basics of cybersecurityEnrol Now
FREE Course: Introduction to Cyber Security

As the name implies, the public key is freely available to anyone, whereas the private key remains with the intended recipients only, who need it to decipher the messages. Both keys are simply large numbers that aren’t identical but are paired with each other, which is where the “asymmetric” part comes in.

What is Hashing?

Finally, there’s hashing. Hashing generates a unique signature of fixed length for a data set or message. Each specific message has its unique hash, making minor changes to the information easily trackable. Data encrypted with hashing cannot be deciphered or reversed back into its original form. That’s why hashing is used only as a method of verifying data.

Many internet security experts don’t even consider hashing an actual encryption method, but the line is blurry enough to let the classification stand. The bottom line, it’s an effective way of showing that no one has tampered with the information.

Now that we have gone through the types of data encryption techniques, let us next learn the specific encryption algorithms.

Specific Encryption Algorithms

There’s a host of different encryption algorithms available today. Here are five of the more common ones.

  • AES. The Advanced Encryption Standard (AES) is the trusted standard algorithm used by the United States government, as well as other organizations. Although extremely efficient in the 128-bit form, AES also uses 192- and 256-bit keys for very demanding encryption purposes. AES is widely considered invulnerable to all attacks except for brute force. Regardless, many internet security experts believe AES will eventually be regarded as the go-to standard for encrypting data in the private sector.
  • Triple DES. Triple DES is the successor to the original Data Encryption Standard (DES) algorithm, created in response to hackers who figured out how to breach DES. It’s symmetric encryption that was once the most widely used symmetric algorithm in the industry, though it’s being gradually phased out. TripleDES applies the DES algorithm three times to every data block and is commonly used to encrypt UNIX passwords and ATM PINs.
  • RSA. RSA is a public-key encryption asymmetric algorithm and the standard for encrypting information transmitted via the internet. RSA encryption is robust and reliable because it creates a massive bunch of gibberish that frustrates would-be hackers, causing them to expend a lot of time and energy to crack into systems.
  • Blowfish. Blowfish is another algorithm that was designed to replace DES. This symmetric tool breaks messages into 64-bit blocks and encrypts them individually. Blowfish has established a reputation for speed, flexibility, and is unbreakable. It’s in the public domain, so that makes it free, adding even more to its appeal. Blowfish is commonly found on e-commerce platforms, securing payments, and in password management tools.
  • Twofish. Twofish is Blowfish’s successor. It’s license-free, symmetric encryption that deciphers 128-bit data blocks. Additionally, Twofish always encrypts data in 16 rounds, no matter what the key size. Twofish is perfect for both software and hardware environments and is considered one of the fastest of its type. Many of today’s file and folder encryption software solutions use this method.
  • Rivest-Shamir-Adleman (RSA). Rivest-Shamir-Adleman is an asymmetric encryption algorithm that works off the factorization of the product of two large prime numbers. Only a user with knowledge of these two numbers can decode the message successfully. Digital signatures commonly use RSA, but the algorithm slows down when it encrypts large volumes of data.

Free Course: CISSP

Free Introduction to Information SecurityStart Learning
Free Course: CISSP

Do You Want to Learn More About Cybersecurity?

There’s a lot to learn about cybersecurity, and Simplilearn offers a great selection of valuable courses to help you enter this challenging field or improve your existing knowledge by upskilling. For instance, if you want to become an ethical hacker, and have a career testing network systems, check our CEH certification course.

Or check out some enterprise-level security training courses such as CISM, CSSP, CISA, CompTIA, and COBIT 2019.

If you can’t decide between the above courses, why not take a handful of them in one convenient program? The Cyber Security Expert Master’s Program teaches you the principles of CompTIA, CEH, CISM, CISSP, and CSSP.

Do You Want to Become a Network Security Professional?

If you’re ready to take those first steps on the path to becoming a network security professional, then you should start with Simplilearn’s CISSP certification training course. The course develops your expertise in defining IT architecture and in designing, building, and maintaining a secure business environment using globally-approved information security standards. The course covers industry best practices and prepares you for the CISSP certification exam held by (ISC)².

You get over 60 hours of in-depth learning, the requisite 30 CPEs you need for taking the certification exam, five simulation test papers designed to help you prepare for the exam, plus an exam voucher. Whether you choose self-paced learning, the Blended Learning option, or a corporate training solution, you will get the benefits of Simplilearn’s expert training, and be ready to embark on that challenging and rewarding network security career!

About the Author


Simplilearn is one of the world’s leading providers of online training for Digital Marketing, Cloud Computing, Project Management, Data Science, IT, Software Development, and many other emerging technologies.

View More
  • Disclaimer
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.