Tutorial Playlist

Data Structure Tutorial

Overview

Arrays in Data Structures: A Guide With Examples

Lesson - 1

All You Need to Know About Two-Dimensional Arrays

Lesson - 2

All You Need to Know About a Linked List in a Data Structure

Lesson - 3

The Complete Guide to Implement a Singly Linked List

Lesson - 4

The Ultimate Guide to Implement a Doubly Linked List

Lesson - 5

The Fundamentals for Understanding Circular Linked List

Lesson - 6

The Ultimate Guide to Stacks and Queues Data Structures

Lesson - 7

Implementing Stacks in Data Structures

Lesson - 8

Your One-Stop Solution for Stack Implementation Using Array

Lesson - 9

Your One-Stop Solution for Queue Implementation Using Array

Lesson - 10

Your One-Stop Solution for Stack Implementation Using Linked-List

Lesson - 11

Your One-Stop Solution to Learn Depth-First Search(DFS) Algorithm From Scratch

Lesson - 12

All You Need to Know About Linear Search Algorithm

Lesson - 13

All You Need to Know About Breadth-First Search Algorithm

Lesson - 14

A One-Stop Solution for Using Binary Search Trees in Data Structure

Lesson - 15

The Best Tutorial to Understand Trees in Data Structure

Lesson - 16

A Complete Guide to Implement Binary Tree in Data Structure

Lesson - 17

A Holistic Look at Using AVL Trees in Data Structures

Lesson - 18

All You Need to Know About Tree Traversal in Data Structure

Lesson - 19

The Best Guide You’ll Ever Need to Understand B-Tree in Data Structure

Lesson - 20

The Best Guide You'll Ever Need to Understand Spanning Tree in Data Structure

Lesson - 21

Your One-Stop Solution for Graphs in Data Structures

Lesson - 22
The Best Guide You’ll Ever Need to Understand B-Tree in Data Structure

A B-tree is a data structure that maintains data sorted and supports logarithmic amortized searches, insertions, and deletions. It is optimized for systems that read and write big data blocks, unlike self-balancing binary search trees. It's most often found in database and file management systems.

By the end of this tutorial, you will understand the technical fundamentals of b-trees with all the necessary details and practical examples.

What Are the Properties of B-Trees? 

  • Each B-Tree node has a maximum of m children.
  • Each node in a B tree includes at least m/2 children, except the root node and the leaf node.
  • At least two root nodes are required.
  • All nodes of the leaf must be on the same level.

These are the properties associated with B-trees in data structures. Next, you will explore various operations you can perform on B-trees in data structures.

Full Stack Web Developer Course

To become an expert in MEAN StackView Course
Full Stack Web Developer Course

What Are the Operations You Can Perform on B-Trees? 

You can execute three operations on a b-tree in data structures:

  • Insertion operation
  • Search operation¬†
  • Deletion operation¬†

Now, you will explore them in detail.

Insertion Operation on B-Trees in Data Structures

btree_in_ds-operation-Insertion-img1

You must start with the root node and then find the suitable leaf node to which the new key will be added using the Binary Search Tree rules. Now, you will check if the leaf node has an empty place and add a new key in the tree. If the leaf node is complete, you must split it and send the key to its parent node. You must do this until all elements are filled in the b-tree.

btree_in_ds-operation-Insertion-img2.

Code:

// A C++ program to perform insertion on btree

#include<bits/stdc++.h>

using namespace std;

// A class to create a node 

class btreenode

{

int *key;

int t;

btreenode **c; // A child pointers array

int n;

bool leaf; // returns true if tree is empty

public:

btreenode(int _t, bool _leaf);// btreenode class constructor

// A function to insert a new key in the subtree rooted with non full node.

void insertnonfull(int k);

// A function to split the child y of this node. 

void splitchild(int i, btreenode *y);

void traverse();// A function to traverse the b-tree

// A function to search the key in the b-tree

btreenode *search(int k); // if k not found the returns NULL

//we will make btree friend of btreenode class so that we can access private members of this class

friend class btree;

};

// class btree

class btree

{

btreenode *root; //root node pointer

int t; 

public:

// btree class Constructor initialized as empty

btree(int _t)

{

root = NULL;

t = _t; 

}

// function to traverse the tree

void traverse()

{ if (root != NULL)

root->traverse(); 

}

// A function to insert the key in the node

void insert(int k);

};

//btreenode class constructor

btreenode::btreenode(int t1, bool leaf1)

{

t = t1;

leaf = leaf1;

// Allocate memory for max possible keys

// and the child pointers

key = new int[2*t-1];

c = new btreenode *[2*t];

n = 0;

}

// A function to traverse the tree

void btreenode::traverse()

{

int i;

for (i = 0; i < n; i++)

{

if (leaf == false)

c[i]->traverse();

cout << " " << key[i];

}

if (leaf == false)

c[i]->traverse();

}

// A Function to insert a key in B-Tree

void btree::insert(int k)

{

//check if tree is empty

if (root == NULL)

{

root = new btreenode(t, true);

root->key[0] = k; 

root->n = 1;

}

else

{

// If root is full, then tree's height increases

if (root->n == 2*t-1)

{

btreenode *s = new btreenode(t, false);

// Change old root as new root's child

s->c[0] = root;

s->splitchild(0, root);

int i = 0;

if (s->key[0] < k)

i++;

s->c[i]->insertnonfull(k);

root = s;

}

else // If root is empty,then we will call insertnonfull 

root->insertnonfull(k);

}

}

void btreenode::insertnonfull(int k)

{

// Initialize index as rightmost element's index

int i = n-1;

if (leaf == true)

{

// The following loop will find the location of key 

//and move all bigger keys one place further

while (i >= 0 && key[i] > k)

{

key[i+1] = key[i];

i--;

}

key[i+1] = k;

n = n+1;

}

else // If this node is not the leaf

{

while (i >= 0 && key[i] > k)

i--;

if (c[i+1]->n == 2*t-1)

{

splitchild(i+1, c[i+1]);

if (key[i+1] < k)

i++;

}

c[i+1]->insertnonfull(k);

}

}

void btreenode::splitchild(int i, btreenode *y)

{

//

btreenode *z = new btreenode(y->t, y->leaf);

z->n = t - 1;

for (int j = 0; j < t-1; j++)

z->key[j] = y->key[j+t];

if (y->leaf == false)

{

for (int j = 0; j < t; j++)

z->c[j] = y->c[j+t];

}

y->n = t - 1;

for (int j = n; j >= i+1; j--)

c[j+1] = c[j];

c[i+1] = z;

for (int j = n-1; j >= i; j--)

key[j+1] = key[j];

key[i] = y->key[t-1];

//we will increment count of keys 

n = n + 1;

}

int main()

{

btree p(3); // A B-Tree with minium degree 3

p.insert(15);

p.insert(2);

p.insert(25);

p.insert(16);

p.insert(32);

p.insert(30);

p.insert(6);

p.insert(7);

cout << "Traversal of the constructed tree is ";

p.traverse();

return 0;

}

btree_in_ds-operation-Insertion-img3

Search Operation on B-Trees in Data Structures

btree_in_ds-operation-search-img1

You must start from the leftmost node and compare it with the key. If it doesn't match, you will move to the next node to find the key or traverse the complete tree.

btree_in_ds-operation-search-img2.

Code:

// C++ program for B-Tree search

#include<iostream>

using namespace std;

// A class to create a b-tree node

class btreenode

{

int *key; 

int t; 

btreenode **c; // A child pointers Array

int n;

bool leaf; // return true if leaf is empty

public:

btreenode(int _t, bool _leaf); // A btreenode class constructor

// A function to insert a new key in the subtree rooted with

// this non full node.

void insertnonfull(int k);

// A function to split the child y of this node. 

void splitchild(int i, btreenode *y);

void traverse();// A function to traverse the b-tree

// A function to search the key in the b-tree

btreenode *search(int k); // if k not found the returns NULL

//we will make btree friend of btreenode class 

//so that we can access private members of this class

friend class btree;

};

class btree

{

btreenode *root; // A root pointer

int t; // Minimum degree

public:

// btree constructor intialized empty

btree(int _t)

{ root = NULL; t = _t; }

// function definition of traverse function

void traverse()

{ if (root != NULL) root->traverse(); }

// function definition of search function

btreenode* search(int k)

{ return (root == NULL)? NULL : root->search(k); }

// A function to insert key in the node

void insert(int k);

};

//btreenode class constructor

btreenode::btreenode(int t1, bool leaf1)

{

t = t1;

leaf = leaf1;

key = new int[2*t-1];

c = new btreenode *[2*t];

n = 0;

}

void btreenode::traverse()

{

int i;

for (i = 0; i < n; i++)

{

// If not leaf, then we will traverse the subtree rooted with child c[i].

if (leaf == false)

c[i]->traverse();

cout << " " << key[i];

}

// Print the subtree rooted with last child

if (leaf == false)

c[i]->traverse();

}

btreenode *btreenode::search(int k)

{

//we will search the key which is greater than 

int i = 0;

while (i < n && k > key[i])

i++;

// If the key is found to be equal to k

if (key[i] == k)

return this;

if (leaf == true)

return NULL;

return c[i]->search(k);

}

// The Function that inserts a key in this B-Tree

void btree::insert(int k)

{

// If the tree is empty

if (root == NULL)

{

// Allocate memory for root

root = new btreenode(t, true);

root->key[0] = k; 

root->n = 1;

}

else

{

// If root is full, then increase height of the tree

if (root->n == 2*t-1)

{

btreenode *s = new btreenode(t, false);

// change old root as new root's child

s->c[0] = root;

s->splitchild(0, root);

int i = 0;

if (s->key[0] < k)

i++;

s->c[i]->insertnonfull(k);

root = s;

}

 // If root is not full, call insertnonfull function for root

else

root->insertnonfull(k);

}

}

void btreenode::insertnonfull(int k)

{

int i = n-1;

if (leaf == true)

{

// The following loop will find the location of key 

//and move all bigger keys one place further

while (i >= 0 && key[i] > k)

{

key[i+1] = key[i];

i--;

}

// Insert the new key at found location

key[i+1] = k;

n = n+1;

}

else

{

// we will search the child which will have key

while (i >= 0 && key[i] > k)

i--;

//check if the child is full,

if((c[i+1]->n) == 2*t-1)

{

//then we will split this child

splitchild(i+1, c[i+1]);

if (key[i+1] < k)

i++;

}

c[i+1]->insertnonfull(k);

}

}

void btreenode::splitchild(int i, btreenode *y)

{

//we will create a new node z

btreenode *z = new btreenode(y->t, y->leaf);

// we will store t-1 keys in z

z->n = t - 1;

// we will copy the last (t-1) keys of y to z

for (int j = 0; j < t-1; j++)

z->key[j] = y->key[j+t];

if (y->leaf == false)

{

for (int j = 0; j < t; j++)

z->c[j] = y->c[j+t];

}

y->n = t - 1;

for (int k = n; k >= i+1; k--)

c[k+1] = c[k];

c[i+1] = z;

for (int k = n-1; k >= i; k--)

key[k+1] = key[k];

key[i] = y->key[t-1];

n = n + 1;

}

int main()

{

btree t(3);

t.insert(13);

t.insert(8);

t.insert(5);

t.insert(6);

t.insert(11);

t.insert(3);

t.insert(7);

t.insert(27);

cout << "Traversal of the constucted tree is ";

t.traverse();

int k = 6;

if(t.search(k) != NULL)

cout << "\nPresent"; 

else 

cout << "\nNot Present";

k = 15;

if(t.search(k) != NULL)

cout << "\nPresent"; 

else 

cout << "\nNot Present";

return 0;

}

btree_in_ds-operation-search-img3.

New Course: Full Stack Development for Beginners

Learn Git Command, Angular, NodeJS, Maven & MoreEnroll Now
New Course: Full Stack Development for Beginners

Deletion Operation on the B-Trees in Data Structures

btree_in_ds-operation-Deletion-img1.

Deletion from a B-tree is more complex than insertion because you can delete a key from any node, not only a leaf, and you must rearrange the node's children when you delete a key from an internal node. 

btree_in_ds-operation-Deletion-img2

Code: 

//A C++ programme to delete keys from btree 

#include<bits/stdc++.h>

using namespace std;

// A class to create btree node

class btreenode

{

int *key;

int t;

btreenode **c; // A child pointer's Array

int n;

bool leaf; // returns true, if node is leaf

public:

btreenode(int _t, bool _leaf); //A btreenode class constructor

// A function to traverse btree

void traverse();

btreenode *search(int k); // if k is not present return false

int findkey(int k);// a function to find a key in the btree

// A function to split the child y of this node.

void splitchild(int i, btreenode *y);

void remove(int k);

//A function to delete a key at idx index which is leaf

void removefromleaf(int idx);

// A function to delete a key at idx index which is leaf non-leaf

void removefromnonleaf(int idx);

int getpred(int idx);

int getsucc(int idx);

// A function for filling the child node in the idx index.

void fill(int idx);

void borrowfromprev(int idx);

void borrowfromnext(int idx);

// A function to merge idx child of the node next node

void merge(int idx);

// we will make BTree friend of btreenode

friend class btree;

};

class btree

{

btreenode *root; //root node's pointer

int t;

public:

//btree class Constructor

btree(int _t)

{

root = NULL;

t = _t;

}

void traverse()

{

if (root != NULL) 

root->traverse();

}

//A function to search a key in this tree

btreenode* search(int k)

{

if(root == NULL) 

return NULL; 

else 

root->search(k);

}

// A function that removes a new key in the BTree

void remove(int k);

};

btreenode::btreenode(int t1, bool l1)

{

t = t1;

leaf = l1;

// Allocate memory for max possible keys and child pointers

key = new int[2*t-1];

c = new btreenode *[2*t];

n = 0;

}

int btreenode::findkey(int k)

{

int idx=0;

while (idx<n && key[idx] < k)

++idx;

return idx;

}

// A function to remove the key k

void btreenode::remove(int k)

{

int idx = findkey(k);

// check if the key to be removed is present in this node

if (idx < n && key[idx] == k)

{

if (leaf)

removefromleaf(idx);

else

removefromnonleaf(idx);

}

else

{

if (leaf)

{

cout << "The key "<< k <<" is not found in the tree\n";

return;

}

bool flag = ( (idx==n)? true : false );

//If there are less than t keys in the child where the key is expected to exist

if (c[idx]->n < t)

fill(idx);

//We recurse on the (idx-1)th child if the last child has been merged, 

//as it must have merged with the preceding child. 

//If not, we go back to the (idx)th child, which now contains at least t keys.

if (flag && idx > n)

c[idx-1]->remove(k);

else

c[idx]->remove(k);

}

return;

}

void btreenode::removefromleaf (int idx)

{

// a loop to shift key back

for (int j=idx+1; j<n; ++j)

key[j-1] = key[j];

n--;

return;

}

void btreenode::removefromnonleaf(int idx)

{

int k = key[idx];

//In the subtree rooted at c[idx], look for k's predecessor 'pred'. 

//if the child preceding k (C[idx]) contains at least t keys. 

//Pred should be substituted for k. 

//Delete pred in C[idx] in a recursive manner.

if (c[idx]->n >= t)

{

int pred = getpred(idx);

key[idx] = pred;

c[idx]->remove(pred);

}

//Examine c[idx+1] if the child C[idx] contains less than t keys. 

//Find the k's successor 'succ' in the subtree rooted at C[idx+1] 

//and replace k with succ if C[idx+1] has at least t keys. 

//Delete succ in C[idx+1] in a recursive manner.

else if (c[idx+1]->n >= t)

{

// this getsucc function returns the successor at idx

int succ = getsucc(idx); 

key[idx] = succ;

c[idx+1]->remove(succ);

}

//we will merge k and all of c[idx+1] into c[idx] 

//if both c[idx] and c[idx+1] have fewer than t keys. 

//2t-1 keys now reside in c[idx]. 

//Remove k from c[idx] by freeing c[idx+1].

else

{

merge(idx);

c[idx]->remove(k);

}

return;

}

// A function to get predecessor of key[idx]

int btreenode::getpred(int idx)

{

// Move to the rightmost node until we get to a leaf.

btreenode *cur=c[idx];

while (!cur->leaf)

cur = cur->c[cur->n];

return cur->key[cur->n-1];

}

int btreenode::getsucc(int idx)

{

btreenode *cur = c[idx+1];

while (!cur->leaf)

cur = cur->c[0];

// Return the first key of the leaf

return cur->key[0];

}

void btreenode::fill(int idx)

{

if (idx!=0 && c[idx-1]->n>=t)

// a function to borrow key from previous node

borrowfromprev(idx);

else if (idx!=n && c[idx+1]->n>=t)

borrowfromnext(idx);

else

{

if (idx != n)

merge(idx);

else

merge(idx-1);

}

return;

}

void btreenode::borrowfromprev(int idx)

{

btreenode *child=c[idx];

btreenode *sibling=c[idx-1];

//The parent receives the final key from C[idx-1], and key[idx-1] from 

//parent is placed as the first key in C[idx]. As a result, the sibling 

//loses one key, and the child receives one. 

for (int i=child->n-1; i>=0; --i)

child->key[i+1] = child->key[i];

//All keys in C[idx] are moved one step forward.

//If c[idx] isn't a leaf, advance all of its child pointers one step.

if (!child->leaf)

{

for(int i=child->n; i>=0; --i)

child->c[i+1] = child->c[i];

}

child->key[0] = key[idx-1];

if(!child->leaf)

child->c[0] = sibling->c[sibling->n];

//Shifting the key from a sibling to a parent. 

//The number of keys in the sibling is reduced as a result.

key[idx-1] = sibling->key[sibling->n-1];

child->n += 1;

sibling->n -= 1;

return;

}

//A function that takes a key from C[idx+1] and stores it in C[idx].

void btreenode::borrowfromnext(int idx)

{

btreenode *child=c[idx];

btreenode *sibling=c[idx+1];

child->key[(child->n)] = key[idx];

//check if child node has a leaf node

if (!(child->leaf))

child->c[(child->n)+1] = sibling->c[0];

key[idx] = sibling->key[0];

for (int j=1; j<sibling->n; ++j)

sibling->key[j-1] = sibling->key[j];

if (!sibling->leaf)

{

for(int j=1; j<=sibling->n; ++j)

sibling->c[j-1] = sibling->c[j];

}

child->n ++;

sibling->n--;

return;

}

//C[idx] and C[idx+1] are merged with this function.

//After merging, C[idx+1] is freed.

void btreenode::merge(int idx)

{

btreenode *child = c[idx];

btreenode *sibling = c[idx+1];

child->key[t-1] = key[idx];

for (int j=0; j<sibling->n; ++j)

child->key[j+t] = sibling->key[j];

// Copying the child pointers from C[idx+1] to C[idx]

if (!child->leaf)

{

for(int j=0; j<=sibling->n; ++j)

child->c[j+t] = sibling->c[j];

}

//To fill the gap created by shifting keys[idx] to C[idx], 

//move all keys following idx in the current node one step before.

for (int i=idx+1; i<n; ++i)

key[i-1] = key[i];

//Moving the child pointers one step 

//before (idx+1) in the current node

for (int j=idx+2; j<=n; ++j)

c[j-1] = c[j];

//Updating the current node's key count 

//and the child's key count

child->n += sibling->n+1;

n--;

delete(sibling);

return;

}

//A function to separate this node's child y

void btreenode::splitchild(int i, btreenode *y)

{

//Create a new node that will store the keys

`btreenode *z = new btreenode(y->t, y->leaf);

z->n = t - 1;

for (int j = 0; j < t-1; j++)

z->key[j] = y->key[j+t];

if (y->leaf == false)

{

for (int j = 0; j < t; j++)

z->c[j] = y->c[j+t];

}

y->n = t - 1;

//Create a new child space for this node 

//since it will have a new child.

for (int j = n; j >= i+1; j--)

c[j+1] = c[j];

c[i+1] = z;

//This node will be moved with a key of y. 

//Locate the new key and 

//move all larger keys one place forward.

for (int j = n-1; j >= i; j--)

key[j+1] = key[j];

//To this node, copy y's middle key.

key[i] = y->key[t-1];

n++;

}

// A Function to traverse all nodes

void btreenode::traverse()

{

int i;

for (i = 0; i < n; i++)

{

//If this is not a leaf, traverse the subtree rooted 

//with child C[i] before printing key[i].

if (leaf == false)

c[i]->traverse();

cout << " " << key[i];

}

// Print the subtree rooted with last child

if (leaf == false)

c[i]->traverse();

}

//A function to search key k in btree

btreenode *btreenode::search(int k)

{

//Find the first key with a value higher or equal to k.

int i = 0;

while (i < n && k > key[i])

i++;

//Return this node if the detected key is equal to k.

if (key[i] == k)

return this;

//If the key isn't found here and the node is a leaf,

if (leaf == true)

return NULL;

// Go to the appropriate child

return c[i]->search(k);

}

void btree::remove(int k)

{

if (!root)

{

cout << "The tree is empty\n";

return;

}

// A function Call to remove function

root->remove(k);

// Make the first child of the root node the new root 

//if the root node has no keys. 

//If it has a child, set root to NULL otherwise.

if (root->n==0)

{

btreenode *tmp = root;

//check if root has leaf

if (root->leaf)

root = NULL;

else

root = root->c[0];

delete tmp;

}

return;

}

int main()

{

btree p(3); // A B-Tree with minimum degree 3

p.insert(1);

p.insert(13);

p.insert(7);

p.insert(10);

p.insert(11);

p.insert(6);

p.insert(14);

p.insert(15);

cout << "Traversal of tree constructed is\n";

p.traverse();

cout << endl;

p.remove(6);

cout << "Traversal of tree after deleting 6\n";

p.traverse();

cout << endl;

p.remove(13);

cout << "Traversal of tree after deleting 13\n";

p.traverse();

cout << endl;

return 0;

}

btree_in_ds-operation-Deletion-img3.

Advance your career as a MEAN stack developer with the Full Stack Web Developer - MEAN Stack Master's Program. Enroll now!

Next Steps

Your next stop in understanding data structures would be "B+ Trees in data structure". A b+ tree is a unique m-way tree data structure. A b+ Tree of order m can have at most m-1 keys and m children. A b+ tree can be used as a b-tree with only keys to each node and with linked leaves to which an additional level is added at the bottom.

Maybe you are looking for more comprehensive learning of software development which can help you forge a strong career in software development. If that is the case, explore Simplilearn's Postgraduate Program in Full Stack Web Development in collaboration with Caltech CTME, the behemoth university in technology education. This coding boot camp program offers the learning, practice, and certifications that you need not just to get work-ready but stand a chance to compete for top software development jobs anywhere in the world. 

If you have any questions or need any clarifications regarding this "B-trees in data structures" tutorial, do let us know by leaving them in the comments section you can find at the bottom of this page. Our expert team will review and ensure that they are answered at the earliest.

About the Author

SimplilearnSimplilearn

Simplilearn is one of the world’s leading providers of online training for Digital Marketing, Cloud Computing, Project Management, Data Science, IT, Software Development, and many other emerging technologies.

View More
  • Disclaimer
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.